RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000159.xml
Radiopraxis 2023; 16(01): E21-E33
DOI: 10.1055/a-1993-7420
DOI: 10.1055/a-1993-7420
CPD-Fortbildung
Digitale SPECT und PET: Klinische Konsequenzen

Bei der Betrachtung physikalischer Vorteile von neuartigen Technologien für Gammakameras und PET-Scanner sollte stets auch der konkrete Mehrwert für die Patientinnen und Patienten beachtet und überprüft werden. Dieser CME-Artikel bietet einen Überblick über mögliche klinische Konsequenzen und Vorteile dieser Technologien und insbesondere die bisherige klinische Evidenz.
Publikationsverlauf
Artikel online veröffentlicht:
15. März 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 Desmonts C, Bouthiba MA, Enilorac B. et al. Evaluation of a new multipurpose whole-body CzT-based camera: comparison with a dual-head Anger camera and first clinical images. EJNMMI Phys 2020; 7: 18
- 2 Kennedy J, Iosilevsky G, Przewloka K. et al. 3D Spatial resolution map, energy resolution, sensitivity, and count rate performance of a dedicated cardiac CZT SPECT camera. J Nucl Med 2011; 52: 437-437
- 3 Ito T, Matsusaka Y, Onoguchi M. et al. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator. Journal of Applied Clinical Medical Physics 2021; 22: 165-177
- 4 Niimi T, Nanasato M, Sugimoto M. et al. Comparative cardiac phantom study using Tc-99m/I-123 and Tl-201/I-123 tracers with cadmium-zinc-telluride detector-based singlephoton emission computed tomography. Nucl Med Mol Imaging 2019; 53: 57-63
- 5 Gimelli A, Liga R, Avogliero F. et al. Relationships between left ventricular sympathetic innervation and diastolic dysfunction: the role of myocardial innervation/perfusion mismatch. J Nucl Cardiol 2018; 25: 1101-1109
- 6 Blaire T, Bailliez A, Ben Bouallegue F. et al. First assessment of simultaneous dual isotope ((123)I/(99m)Tc) cardiac SPECT on two different CZT cameras: A phantom study. J Nucl Cardiol 2018; 25: 1692-1704
- 7 GE Healthcare. Discovery NM/CT 670 CZT. A DIGITAL SPECT/CT. Data Sheet. 2022: http://promed-sa.com/wpcontent/uploads/2020/08/DOC1926734-REV3-Discovery-NMCT-670-CZT-Datasheet_20170620.pdf Stand: 20.01.2022
- 8 GE Healthcare. Discovery NM/CT 670 Pro. Data sheet https://hobbydocbox.com/Photography/86411476-Discovery-nm-ct-670-pro.html Stand: 20.01.2022
- 9 Keidar Z, Raysberg I, Lugassi R. et al. Novel cadmium zinc telluride based detector general purpose gamma camera: initial evaluation and comparison with a standard camera. J Nucl Med 2016; 57: 259-259
- 10 Bani Sadr A, Testart N, Tylski P. et al. Reduced scan time in 123I-FP-CIT SPECT imaging using a large-field cadmiumzinc-telluride camera. Clin Nucl Med 2019; 44: 568-569
- 11 Yamane T, Kondo A, Takahashi M. et al. Ultrafast bone scintigraphy scan for detecting bone metastasis using a CZT whole-body gamma camera. Eur J Nucl Med Mol Imaging 2019; 46: 1672-1677
- 12 Goshen E, Beilin L, Stern E. et al. Feasibility study of a novel general purpose CZT-based digital SPECT camera: initial clinical results. EJNMMI Phys 2018; 5: 6
- 13 Zoccarato O, Lizio D, Savi A. et al. Comparative analysis of cadmium-zincum-telluride cameras dedicated to myocardial perfusion SPECT: A phantom study. J Nucl Cardiol 2016; 23: 885-893
- 14 Sharir T, Ben-Haim S, Merzon K. et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging 2008; 1: 156-163
- 15 Imbert L, Poussier S, Franken PR. et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med 2012; 53: 1897-1903
- 16 Mouden M, Timmer JR, Ottervanger JP. et al. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging 2012; 39: 1048-1055
- 17 Baumgarten R, Cerci RJ, de Nadai Costa A. et al. Radiation exposure after myocardial perfusion imaging with Cadmium-Zinc-Telluride camera versus conventional camera. J Nucl Cardiol 2021; 28: 992-999
- 18 Gimelli A, Liga R, Bertasi M. et al. Head-to-head comparison of a CZT-based all-purpose SPECT camera and a dedicated CZT cardiac device for myocardial perfusion and functional analysis. J Nucl Cardiol 2021; 28: 1323-1330
- 19 Morelle M, Bellevre D, Hossein-Foucher C. et al. First comparison of performances between the new whole-body cadmium-zinc-telluride SPECT-CT camera and a dedicated cardiac CZT camera for myocardial perfusion imaging: Analysis of phantom and patients. J Nucl Cardiol 2020; 27: 1261-1269
- 20 Cantoni V, Green R, Acampa W. et al. Diagnostic performance of myocardial perfusion imaging with conventional and CZT single-photon emission computed tomography in detecting coronary artery disease: A meta-analysis. J Nucl Cardiol 2021; 28: 698-715
- 21 Wu D, Zhang Z, Ma R. et al. Comparison of CZT SPECT and conventional SPECT for assessment of contractile function, mechanical synchrony and myocardial scar in patients with heart failure. J Nucl Cardiol 2019; 26: 443-452
- 22 Ziadi MC, Dekemp RA, Williams KA. et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011; 58: 740-748
- 23 Murthy VL, Naya M, Foster CR. et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011; 124: 2215-2224
- 24 Agostini D, Roule V, Nganoa C. et al. First validation of myocardial flow reserve assessed by dynamic (99m)Tc-sestamibi CZT-SPECT camera: head to head comparison with (15)Owater PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 2018; 45: 1079-1090
- 25 Otaki Y, Manabe O, Miller RJH. et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with (15)O-water PET. J Nucl Cardiol 2021; 28: 1477-1486
- 26 Imbert L, Roch V, Merlin C. et al. Low-dose dual-isotope procedure planed for myocardial perfusion CZT-SPECT and assessed through a head-to-head comparison with a conventional single-isotope protocol. J Nucl Cardiol 2018; 25: 2016-2023
- 27 Shiraishi S, Tsuda N, Sakamoto F. et al. Clinical usefulness of quantification of myocardial blood flow and flow reserve using CZT-SPECT for detecting coronary artery disease in patients with normal stress perfusion imaging. J Cardiol 2020; 75: 400-409
- 28 Palmedo H, Marx C, Ebert A. et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging 2014; 41: 59-67
- 29 Rager O, Nkoulou R, Exquis N. et al. Whole-body SPECT/CT versus planar bone scan with targeted SPECT/CT for metastatic workup. Biomed Res Int 2017; 2017: 7039406
- 30 Even-Sapir E, Metser U, Mishani E. et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multifield-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006; 47: 287-297
- 31 Verger L, Gentet MC, Gerfault L. et al. Performance and perspectives of a CdZnTe-based gamma camera for medical imaging. IEEE Transactions on Nuclear Science 2004; 51: 3111-3117
- 32 Le Rouzic G, Zananiri R. First performance measurements of a new multi-detector CZT-Based SPECT/CT system: GE Star-Guide. J Nucl Med 2021; 62: 1125-1125
- 33 Piatkova Y, Payoux P, Boursier C. et al. Prospective paired comparison of 123I-FP-CIT SPECT images obtained with a 360°-CZT and a conventional camera. Clin Nucl Med 2022; 47: 14-20
- 34 Bordonne M, Chawki MB, Marie PY. et al. High-quality brain perfusion SPECT images may be achieved with a high-speed recording using 360° CZT camera. EJNMMI Phys 2020; 7: 65
- 35 Melki S, Chawki MB, Marie PY. et al. Augmented planar bone scintigraphy obtained from a whole-body SPECT recording of less than 20 min with a high-sensitivity 360° CZT camera. Eur J Nucl Med Mol Imaging 2020; 47: 1329-1331
- 36 Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging 2011; 38: 1147-1157
- 37 Cherry SR, Jones T, Karp JS. et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 2018; 59: 3-12
- 38 Surti S, Karp JS. Update on latest advances in time-of-flight PET. Phys Med 2020; 80: 251-258
- 39 Sekine T, Delso G, Zeimpekis KG. et al. Reduction of 18F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology 2017; 286: 249-259
- 40 Jiang W, Chalich Y, Deen MJ. Sensors for positron emission tomography applications. Sensors (Basel) 2019; 19
- 41 EANM Research Ltd. (EARL) publications and guidelines https://earl.eanm.org/guidelines-and-publications/Stand: 22.01.2022
- 42 Fuentes-Ocampo F, López-Mora DA, Flotats A. et al. Digital vs. analog PET/CT: intra-subject comparison of the SUVmax in target lesions and reference regions. Eur J Nucl Med Mol Imaging 2019; 46: 1745-1750
- 43 Hsu DFC, Ilan E, Peterson WT. et al. Studies of a next-generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med 2017; 58: 1511-1518
- 44 Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI Res 2018; 8: 97
- 45 Oddstig J, Brolin G, Trägårdh E. et al. Head-to-head comparison of a Si-photomultiplier-based and a conventional photomultiplier-based PET-CT system. EJNMMI Phys 2021; 8: 19
- 46 López-Mora DA, Flotats A, Fuentes-Ocampo F. et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging 2019; 46: 1383-1390
- 47 Baratto L, Toriihara A, Hatami N. et al. Results of a prospective trial to compare (68)Ga-DOTA-TATE with SiPM-based PET/CT vs. conventional PET/CT in patients with neuroendocrine tumors. Diagnostics (Basel) 2021; 11
- 48 Alberts I, Sachpekidis C, Prenosil G. et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [(18)F]-FDG PET/CT. Ann Nucl Med 2021; 35: 485-492
- 49 Teoh EJ, McGowan DR, Macpherson RE. et al. Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q. Clear on an LYSO PET/CT System. J Nucl Med 2015; 56: 1447-1452
- 50 Messerli M, Stolzmann P, Egger-Sigg M. et al. Impact of a Bayesian penalized likelihood reconstruction algorithm on image quality in novel digital PET/CT: clinical implications for the assessment of lung tumors. EJNMMI Phys 2018; 5: 27
- 51 Otani T, Hosono M, Kanagaki M. et al. Evaluation and optimization of a new PET reconstruction algorithm, Bayesian penalized likelihood reconstruction, for lung cancer assessment according to lesion size. AJR Am J Roentgenol 2019; 213: W50-W56
- 52 Trägårdh E, Minarik D, Brolin G. et al. Optimization of [(18)F] PSMA-1007 PET-CT using regularized reconstruction in patients with prostate cancer. EJNMMI Phys 2020; 7: 31
- 53 Guo B, Wu Z, Zhao B. et al. Quantification accuracy using Bayesian penalized likelihood based reconstruction on 68Ga PET-CT. Journal of Nuclear Medicine 2020; 61: 162-162
- 54 Lindström E, Velikyan I, Regula N. et al. Regularized reconstruction of digital time-of-flight (68)Ga-PSMA-11 PET/CT for the detection of recurrent disease in prostate cancer patients. Theranostics 2019; 9: 3476-3484
- 55 Chicheportiche A, Goshen E, Godefroy J. et al. Can a penalized-likelihood estimation algorithm be used to reduce the injected dose or the acquisition time in (68)Ga-DOTATATE PET/CT studies?. EJNMMI Phys 2021; 8: 13
- 56 Kurita Y, Ichikawa Y, Nakanishi T. et al. The value of Bayesian penalized likelihood reconstruction for improving lesion conspicuity of malignant lung tumors on (18)F-FDG PET/CT: comparison with ordered subset expectation maximization reconstruction incorporating time-of-flight model and point spread function correction. Ann Nucl Med 2020; 34: 272-279
- 57 Teoh EJ, McGowan DR, Bradley KM. et al. Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules. Eur Radiol 2016; 26: 576-584
- 58 Schwyzer M, Martini K, Benz DC. et al. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: impact of image reconstructions on diagnostic performance. Eur Radiol 2020; 30: 2031-2040
- 59 Ly J, Minarik D, Edenbrandt L. et al. The use of a proposed updated EARL harmonization of (18)F-FDG PET-CT in patients with lymphoma yields significant differences in Deauville score compared with current EARL recommendations. EJNMMI Res 2019; 9: 65
- 60 Lindström E, Lindsjö L, Sundin A. et al. Evaluation of blocksequential regularized expectation maximization reconstruction of (68)Ga-DOTATOC, (18)F-fluoride, and (11)Cacetate whole-body examinations acquired on a digital time-of-flight PET/CT scanner. EJNMMI Phys 2020; 7: 40
- 61 Lindström E, Sundin A, Trampal C. et al. Evaluation of penalized-likelihood estimation reconstruction on a digital timeof-flight PET/CT scanner for (18)F-FDG whole-body examinations. J Nucl Med 2018; 59: 1152-1158
- 62 Rogasch JM, Suleiman S, Hofheinz F. et al. Reconstructed spatial resolution and contrast recovery with Bayesian penalized likelihood reconstruction (Q. Clear) for FDG-PET compared to time-of-flight (TOF) with point spread function (PSF). EJNMMI Phys 2020; 7: 2
- 63 Seo Y, Khalighi MM, Wangerin KA. et al. Quantitative and qualitative improvement of low-count [(68)Ga]citrate and [(90)Y]microspheres PET image reconstructions using block sequential regularized expectation maximization algorithm. Molecular imaging and biology 2020; 22: 208-216
- 64 Shkumat NA, Vali R, Shammas A. Clinical evaluation of reconstruction and acquisition time for pediatric (18)F-FDG brain PET using digital PET/CT. Pediatr Radiol 2020; 50: 966-972
- 65 Howard BA, Morgan R, Thorpe MP. et al. Comparison of Bayesian penalized likelihood reconstruction versus OS-EM for characterization of small pulmonary nodules in oncologic PET/CT. Ann Nucl Med 2017; 31: 623-628
- 66 Pan T, Einstein SA, Kappadath SC. et al. Performance evaluation of the 5-Ring GE Discovery MI PET/CT system using the national electrical manufacturers association NU 2-2012 Standard. Med Phys 2019; 46: 3025-3033
- 67 Prenosil GA, Sari H, Fürstner M. et al. Performance characteristics of the Biograph Vision Quadra PET/CT system with long axial field of view using the NEMA NU 2-2018 Standard. J Nucl Med 2021;
- 68 Karp JS, Viswanath V, Geagan MJ. et al. PennPET Explorer: design and preliminary performance of a whole-body imager. J Nucl Med 2020; 61: 136-143 119.229997
- 69 Badawi R, Liu W, Berg E. et al. Progress on the EXPLORER project: towards a total body PET scanner for human imaging. J Nucl Med 2018; 59: 223-223
- 70 Badawi RD, Shi H, Hu P. et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019; 60: 299-303
- 71 Tiwari A, Merrick M, Graves SA. et al. Monte Carlo evaluation of hypothetical long axial field-of-view PET scanner using GE Discovery MI PET front-end architecture. Med Phys 2021;
- 72 Spencer BA, Berg E, Schmall JP. et al. Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med 2021; 62: 861-870
- 73 Alberts I, Hünermund JN, Prenosil G. et al. Clinical performance of long axial field of view PET/CT: a head-to-head intraindividual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. Eur J Nucl Med Mol Imaging 2021; 48: 2395-2404
- 74 Feng T, Zhao Y, Shi H. et al. Total-body quantitative parametric imaging of early kinetics of (18)F-FDG. J Nucl Med 2021; 62: 738-744
- 75 Nadig V, Herrmann K, Mottaghy FM. et al. Hybrid total-body pet scanners-current status and future perspectives. Eur J Nucl Med Mol Imaging 2021;
- 76 Teimoorisichani M, Panin V, Rothfuss H. et al. A CT-less approach to quantitative PET imaging using the LSO intrinsic radiation for long-axial FOV PET scanners. Med Phys 2022; 49: 309-323