RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2023; 55(10): 1561-1569
DOI: 10.1055/a-1994-8251
DOI: 10.1055/a-1994-8251
paper
Synthesis of Spiro[benzofuran-2,3′-pyrazol]-3-imines from Aurone-Derived Azadienes and Hydrazonoyl Chlorides via Regio- and Diastereospecific [2+3] Cycloaddition
We thank the National Natural Science Foundation of China (NSFC) (Nos. 21971092 and 21901014), the Innovation Platform for the Integration of Production and Education of Guangdong Education Department (No. 2021CJPT014), the Innovation Team of Guangdong Education Department (No. 2022KCXTD054), the Shenzhen Science and Technology Innovation Committee (Nos. JSGG20201103153800002, JCYJ20200109141808025, and GJHZ20200731095412037), and the Post-doctoral Foundation Project of Shenzhen Polytechnic (No. 6021330005K) for financial support.

Abstract
An array of spiro[benzofuran-2,3′-pyrazol]-3-imines with diverse functional groups were readily assembled from aurone-derived azadienes and in-situ generated nitrilimines under mild conditions. The transformation was performed in a regio- and diastereoselective fashion, in which a synergetic [2+3] cycloaddition pathway was likely involved. This novel methodology has extended the synthetic application of aurone-derived azadienes as a kind of two-atom synthon.
Key words
spiro[benzofuran-2,3′-pyrazol]-3-imines - aurone-derived azadienes - hydrazonoyl chlorides - nitrilimines - [2+3] cycloadditionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1994-8251.
- Supporting Information
Publikationsverlauf
Eingereicht: 28. Oktober 2022
Angenommen nach Revision: 08. Dezember 2022
Accepted Manuscript online:
08. Dezember 2022
Artikel online veröffentlicht:
19. Januar 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Millemaggi A, Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
- 1b Walsh CT. Tetrahedron Lett. 2015; 56: 3075
- 2a Mercs L, Albrecht M. Chem. Soc. Rev. 2010; 39: 1903
- 2b Gomtsyan A. Chem. Heterocycl. Compd. 2012; 48: 7
- 2c Chen D, Su S.-J, Cao Y. J. Mater. Chem. C 2014; 2: 9565
- 2d Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2e Bunz UH. F, Freudenberg J. Acc. Chem. Res. 2019; 52: 1575
- 2f Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
- 3a Molina P, Vilaplana MJ. Synthesis 1994; 1197
- 3b Lygin AV, de Meijere A. Angew. Chem. Int. Ed. 2010; 49: 9094
- 4a Wang C.-S, Li T.-Z, Cheng Y.-C, Zhou J, Mei G.-J, Shi F. J. Org. Chem. 2019; 84: 3214
- 4b Rong Z.-Q, Wang M, Chow CH. E, Zhao Y. Chem. Eur. J. 2016; 22: 9483
- 4c Chen J, Jia P, Huang Y. Org. Lett. 2018; 20: 6715
- 4d Gu Z, Wu B, Jiang G.-F, Zhou Y.-G. Chin. J. Chem. 2018; 36: 1130
- 4e Fan T, Zhang Z.-J, Zhang Y.-C, Song J. Org. Lett. 2019; 21: 7897
- 4f Xie H.-P, Sun L, Wu B, Zhou Y.-G. J. Org. Chem. 2019; 84: 15498
- 4g Cheng B, Zhang X, Zhai S, He Y, Tao Q, Li H, Wei J, Sun H, Wang T, Zhai H. Adv. Synth. Catal. 2020; 362: 3836
- 4h Frankowski S, Skrzyńska A, Sieroń L, Albrecht Ł. Adv. Synth. Catal. 2020; 362: 2658
- 4i Li J, Liu S, Zhong R, Yang Y, Xu J, Yang J, Ding H, Wang Z. Org. Lett. 2021; 23: 9526
- 4j Feng Q, Wu A, Zhang X, Song L, Sun J. Chem. Sci. 2021; 12: 7953
- 4k Hu Y, Shi W, Yan Z, Liao J, Liu M, Xu J, Wang W, Wu Y, Zhang C, Guo H. Org. Lett. 2021; 23: 6780
- 4l Chen J, Huang Y. Org. Lett. 2017; 19: 5609
- 4m Gao Z.-H, Chen K.-Q, Zhang Y, Kong LM, Li Y, Ye S. J. Org. Chem. 2018; 83: 15225
- 4n Chen K.-Q, Gao Z.-H, Ye S. Org. Chem. Front. 2019; 6: 405
- 4o Liu Y.-Z, Wang Z, Huang Z, Zheng X, Yang W.-L, Deng W.-P. Angew. Chem. Int. Ed. 2020; 59: 1238
- 4p Trost BM, Zuo Z. Angew. Chem. Int. Ed. 2020; 59: 1243
- 4q Shen J, Yu A, Meng X. Org. Biomol. Chem. 2021; 19: 9026
- 4r Liu Y.-Z, Wang Z, Huang Z, Yang W.-L, Deng W.-P. Org. Lett. 2021; 23: 948
- 4s Ni H, Tang X, Zheng W, Yao W, Ullah N, Lu Y. Angew. Chem. Int. Ed. 2017; 56: 14222
- 4t Jiang B, Du W, Chen Y.-C. Chem. Commun. 2020; 56: 7257
- 4u Rong Z.-Q, Yang L.-C, Liu S, Yu Z, Wang YN, Tan ZY, Huang R.-Z, Lan Y, Zhao Y. J. Am. Chem. Soc. 2017; 139: 15304
- 4v Yang L.-C, Rong Z.-Q, Wang Y.-N, Tan ZY, Wang M, Zhao Y. Angew. Chem. Int. Ed. 2017; 56: 2927
- 4w Scuiller A, Karnat A, Casaretto N, Archambeau A. Org. Lett. 2021; 23: 2332
- 4x Wang Y.-N, Yang L.-C, Rong Z.-Q, Liu T.-L, Liu R, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 1596
- 5a Chen T, Zhang Y, Fu Z, Huang W. Asian J. Org. Chem. 2019; 8: 2175
- 5b Fang Q.-Y, Yi M.-H, Wu X.-X, Zhao L.-M. Org. Lett. 2020; 22: 5266
- 5c Wang Y.-X, Lu Y.-N, Xu L.-L, Sheng F.-T, Zhang J.-P, Tan W, Shi F. Synthesis 2020; 52: 2979
- 5d Liu KJ, Yang J, Li X. Org. Lett. 2021; 23: 826
- 5e Trost BM, Zuo Z. Angew. Chem. Int. Ed. 2021; 60: 5806
- 5f Ismail SN. F. B. S, Yang B, Zhao Y. Org. Lett. 2021; 23: 2884
- 5g Li Q, Pan R, Wang M, Yao H, Lin A. Org. Lett. 2021; 23: 2292
- 5h Yan R.-J, Liu B.-X, Hu Y, Du W, Chen Y.-C. Chem. Commun. 2021; 57: 9056
- 5i Zhang G, Yu A, Lei Y, Meng X, Zhang L. Org. Chem. Front. 2021; 8: 3718
- 5j Shi W, Ren Y, Zhao H, Tang Y, Piao S, Mao B, Wang W, Wu Y, Wang B, Guo H. Org. Lett. 2022; 24: 3747
- 5k Zhang W, Wei X, Wang Y, Huang Y, Nawaz S, Qu J, Wang B. Org. Chem. Front. 2022; 9: 5197
- 6a Gu Z, Xie J.-J, Jiang G.-F, Zhou Y.-G. Asian J. Org. Chem. 2018; 7: 1561
- 6b Gu Z, Zhou J, Jiang G.-F, Zhou Y.-G. Org. Chem. Front. 2018; 5: 1148
- 6c Lin W, Lin X, Cheng Y, Chang X, Zhou S, Li P, Li W. Org. Chem. Front. 2019; 6: 2452
- 6d Xie H.-P, Wu B, Wang X.-W, Zhou Y.-G. Chin. J. Catal. 2019; 40: 1566
- 6e Wang C.-J, Yang Q.-Q, Wang M.-X, Shang Y.-H, Tong X.-Y, Deng Y.-H, Shao Z. Org. Chem. Front. 2020; 7: 609
- 6f Yan J, Li X, Chen Y, Li Y, Chen W, Zhan R, Huang H. J. Org. Chem. 2020; 85: 12175
- 6g Zhang C, Cheng Y, Li F, Luan Y, Li P, Li W. Adv. Synth. Catal. 2020; 362: 1286
- 6h Zhou J, Li TZ, Sun Y.-W, Du B.-X, Tan W, Shi F. ChemCatChem 2020; 12: 4862
- 6i Lu Z, Hu J, Lan W, Mo X, Zhou S, Tang Y, Yuan W, Zhang X, Liao L. Tetrahedron Lett. 2021; 67: 152862
- 7a Jiang K, Li S.-J, Liu Q.-P, Yu N, Li Y.-L, Zhou Y.-Q, He K.-C, Lin J, Zheng T.-Y, Lang J, Lan Y, Wei Y. Chem. Sci. 2022; 13: 7283
- 7b Lin J, Zheng T.-Y, Fan N.-Q, Zhang P, Jiang K, Wei Y. Org. Chem. Front. 2021; 8: 3776
- 7c Meng F.-T, Chen J.-L, Qin X.-Y, Zhang T.-S, Tu S.-J, Jiang B, Hao W.-J. Org. Chem. Front. 2022; 9: 140
- 8 Cheng B, Li H, Zhu X, Zhang X, He Y, Sun H, Wang T, Zhai H. Chem. Commun. 2021; 57: 7701
- 9a Cheng B, Li H, Sun J, Zhang X, He Y, Sun H, Xu W, Wang T, Zhai H. J. Org. Chem. 2021; 86: 5265
- 9b Cheng B, Bao B, Xu W, Li Y, Li H, Zhang X, Li Y, Wang T, Zhai H. Org. Biomol. Chem. 2020; 18: 2949
- 10 Chande MS, Barve PA, Suryanarayan V. J. Heterocycl. Chem. 2007; 44: 49
- 11 Schmidt B, Scheufler C, Volz J, Feth MP, Hummel RP, Hatzelmann A, Zitt C, Wohlsen A, Marx D, Kley HP, Ockert D, Heuser A, Christiaans JA. M, Sterk GJ, Menge WM. P. B. WO2008138939 [P], 2008
- 12 Schlemminger I, Schmidt B, Flockerzi D, Tenor H, Zitt C, Hatzelmann A, Marx D, Braun C, Kuelzer R, Heuser A, Kley HP, Sterk GJ. WO2010055083 [P], 2010
- 13 Tu L, Gao L, Wang Q, Cao Z, Huang R, Zheng Y, Liu J. J. Org. Chem. 2022; 87: 3389
- 14 CCDC 2162691 (3a) and 2180775 (4a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 15 Su Y, Ma C, Zhao Y, Yang C, Feng Y, Wang K.-H, Huang D, Huo C, Hu Y. Tetrahedron 2020; 76: 131355
- 16 Rong Z.-Q, Wang M, Chow CH. E, Zhao Y. Chem. Eur. J. 2016; 22: 9483