CC BY 4.0 · SynOpen 2023; 07(01): 69-75 DOI: 10.1055/a-1995-1859
paper
Virtual Collection Click Chemistry and Drug Discovery
Photochemical Synthesis of Pyrazolines from Tetrazoles in Flow
Adam Burke
,
Silvia Spiccio
,
Mara Di Filippo
,
This research was supported by Science Foundation Ireland (12/RC2275_P2 and 18/RI/5702), the Royal Society of Chemistry (Research Enablement Grant; E20-2998), and the School of Chemistry through provision of a Sir Walter Hartley scholarship to M.D.F.
Abstract
Pyrazolines and their pyrazole congeners are important heterocyclic building blocks with numerous applications in the fine chemical industries. However, traditional routes towards these entities are based on multistep syntheses generating substantial amounts of chemical waste. Here we report an alternative approach using UV-light to convert tetrazoles into pyrazolines via a reagent-free photo-click strategy. This route generates nitrile imine dipoles in situ that are trapped with different dipolarophiles rendering a selection of these heterocyclic targets in high chemical yields. A continuous flow method is ultimately realized that generates multigram quantities of product in a safe and readily scalable manner thus demonstrating the value of this photochemical approach for future exploitations in industry.
Key words
flow chemistry -
photochemistry -
pyrazoline -
tetrazole -
click reaction -
drug-like heterocycles
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1995-1859.
Supporting Information
Publication History
Received: 24 November 2022
Accepted after revision: 07 December 2022
Accepted Manuscript online: 08 December 2022
Article published online: 22 February 2023
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Ahsan MJ,
Ali A,
Ali A,
Thiriveedhi A,
Bakht MA,
Yusuf M,
Salahuddin,
Afzal O,
Altamimi AS. A.
ACS Omega 2022; 7: 38207
1b
Haider K,
Shafeeque M,
Yahya S,
Yar MS.
Eur. J. Med. Chem. Rep. 2022; 5: 100042
1c
Kumari P,
Mishra VS,
Narayana C,
Khanna A,
Chakrabarty A,
Sagar R.
Sci. Rep. 2020; 10: 6660
2a
Baumann M,
Baxendale IR,
Ley SV,
Nikbin N.
Beilstein J. Org. Chem. 2011; 7: 442
2b
Silver KS,
Soderlund DM.
Pestic. Biochem. Physiol. 2005; 82: 136
2c
Mertens L,
Hock KJ,
Koenigs RM.
Chem. Eur. J. 2016; 22: 9542
2d
Alex K,
Tillack A,
Schwarz N,
Beller M.
Org. Lett. 2008; 10: 2377
3a
Vahedpour T,
Hamzeh-Mivehroud M,
Hemmati S,
Dastmalchi S.
ChemistrySelect 2021; 6: 6483
3b
Lévai A.
Chem. Heterocycl. Compd. 1997; 33: 647
3c
Li Y,
Wei L,
Wan J.-P,
Wen C.
Tetrahedron 2017; 73: 2323
3d
Golovanov AA,
Odin IS,
Gusev DM,
Vologzhanina AV,
Sosnin IM,
Grabovskiy SA.
J. Org. Chem. 2021; 86: 7229
4a
Bégué D,
Dargelos A,
Wentrup C.
J. Org. Chem. 2020; 85: 7952
4b
Bégué D,
Qiao GG,
Wentrup C.
J. Am. Chem. Soc. 2012; 134: 5339
4c
Nunes CM,
Reva I,
Fausto R,
Bégué D,
Wentrup C.
Chem. Commun. 2015; 51: 14712
4d
Deepthi A,
Acharjee N,
Sruthi SL,
Meenakshy CB.
Tetrahedron 2022; 116: 132812
5a
Wang Y.-G,
Zhang J,
Lin X.-F,
Ding H.-F.
Synlett 2003; 1467
5b
Alizadeh A,
Moafi L,
Zhu L.-G.
Synlett 2016; 27: 595
5c
Utecht G,
Fruziński A,
Jasiński M.
Org. Biomol. Chem. 2018; 16: 1252
6a
Wang Y,
Rivera Vera CI,
Lin Q.
Org. Lett. 2007; 9: 4155
6b
Clovis JS,
Eckell A,
Huisgen R,
Sustmann R.
Chem. Ber. 1967; 100: 60
6c
Padwa A,
Nahm S,
Sato E.
J. Org. Chem. 1978; 43: 1664
7a
Plutschack MB,
Pieber B,
Gilmore K,
Seeberger PH.
Chem. Rev. 2017; 117: 11796
7b
Gutmann B,
Cantillo D,
Kappe CO.
Angew. Chem. Int. Ed. 2015; 54: 6688
7c
Colella M,
Nagaki A,
Luisi R.
Chem. Eur. J. 2020; 26: 19
8a
Dallinger D,
Gutmann B,
Kappe CO.
Acc. Chem. Res. 2020; 53: 1330
8b
Movsisyan M,
Delbeke EI. P,
Berton JK. E. T,
Battilocchio C,
Ley SV,
Stevens CV.
Chem. Soc. Rev. 2016; 45: 4892
9a
Fitzpatrick DE,
Ley SV.
Tetrahedron 2018; 74: 3087
9b
Adamo A,
Beingessner RL,
Behnam M,
Chen J,
Jamison TJ,
Jensen KF,
Monbaliu J.-CM,
Myerson AS,
Revalor EM,
Snead DR,
Stelzer T,
Weeranoppanant N,
Wong SY,
Zhang P.
Science 2016; 352: 61
10a
Breen CP,
Nambiar AM. K,
Jamison TF,
Jensen KF.
Trends Chem. 2021; 3: 373
10b
Gioiello A,
Piccinno A,
Lozza AM,
Cerra B.
J. Med. Chem. 2020; 63: 6624
10c
Baumann M,
Moody TS,
Smyth M,
Wharry S.
Org. Process Res. Dev. 2020; 24: 1802
10d
Baxendale IR,
Brocken L,
Mallia CJ.
Green Process Synth. 2013; 2: 211
11a
Buglioni L,
Raymenants F,
Slattery A,
Zondag SD. A,
Noël T.
Chem. Rev. 2022; 122: 2752
11b
Sambiago C,
Noël T.
Trends Chem. 2020; 2: 92
11c
Elliott LD,
Knowles JP,
Koovits PJ,
Maskil KG,
Ralph MJ,
Lejeune G,
Edwards LJ,
Robinson RI,
Clemens IR,
Cox B,
Pascoe DD,
Koch G,
Eberle M,
Berry MB,
Booker-Milburn KI.
Chem. Eur. J. 2014; 20: 1
11d
Rehm TH.
ChemPhotoChem 2020; 4: 235
11e
Di Filippo M,
Bracken C,
Baumann M.
Molecules 2020; 25: 356
12
Ley SV,
Chen Y,
Fitzpatrick DE,
May OS.
Curr. Opin. Green Sustainable Chem. 2020; 25: 100353
13
Donnelly K,
Baumann M.
J. Flow Chem. 2021; 11: 223
14
Ramanathan M,
Wang Y.-H,
Liu S.-T.
Org. Lett. 2015; 17: 5886
15 CCDC 2221466, CCDC 2221467, and CCDC 2221468 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
16a
Bracken C,
Baumann M.
J. Org. Chem. 2020; 85: 2607
16b
Donnelly K,
Baumann M.
Chem. Commun. 2021; 57: 2871
17a
Bracken C,
Batsanov AS,
Baumann M.
SynOpen 2021; 5: 29
17b
Di Filippo M,
Baumann M.
Eur. J. Org. Chem. 2020; 2020: 6199
18 Oligomerisation of the dipolarophile was observed when using the high-power LED emitting at 365 nm.