RSS-Feed abonnieren
DOI: 10.1055/a-1995-1859
Photochemical Synthesis of Pyrazolines from Tetrazoles in Flow
This research was supported by Science Foundation Ireland (12/RC2275_P2 and 18/RI/5702), the Royal Society of Chemistry (Research Enablement Grant; E20-2998), and the School of Chemistry through provision of a Sir Walter Hartley scholarship to M.D.F.
Abstract
Pyrazolines and their pyrazole congeners are important heterocyclic building blocks with numerous applications in the fine chemical industries. However, traditional routes towards these entities are based on multistep syntheses generating substantial amounts of chemical waste. Here we report an alternative approach using UV-light to convert tetrazoles into pyrazolines via a reagent-free photo-click strategy. This route generates nitrile imine dipoles in situ that are trapped with different dipolarophiles rendering a selection of these heterocyclic targets in high chemical yields. A continuous flow method is ultimately realized that generates multigram quantities of product in a safe and readily scalable manner thus demonstrating the value of this photochemical approach for future exploitations in industry.
Key words
flow chemistry - photochemistry - pyrazoline - tetrazole - click reaction - drug-like heterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1995-1859.
- Supporting Information
Publikationsverlauf
Eingereicht: 24. November 2022
Angenommen nach Revision: 07. Dezember 2022
Accepted Manuscript online:
08. Dezember 2022
Artikel online veröffentlicht:
22. Februar 2023
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ahsan MJ, Ali A, Ali A, Thiriveedhi A, Bakht MA, Yusuf M, Salahuddin, Afzal O, Altamimi AS. A. ACS Omega 2022; 7: 38207
- 1b Haider K, Shafeeque M, Yahya S, Yar MS. Eur. J. Med. Chem. Rep. 2022; 5: 100042
- 1c Kumari P, Mishra VS, Narayana C, Khanna A, Chakrabarty A, Sagar R. Sci. Rep. 2020; 10: 6660
- 2a Baumann M, Baxendale IR, Ley SV, Nikbin N. Beilstein J. Org. Chem. 2011; 7: 442
- 2b Silver KS, Soderlund DM. Pestic. Biochem. Physiol. 2005; 82: 136
- 2c Mertens L, Hock KJ, Koenigs RM. Chem. Eur. J. 2016; 22: 9542
- 2d Alex K, Tillack A, Schwarz N, Beller M. Org. Lett. 2008; 10: 2377
- 3a Vahedpour T, Hamzeh-Mivehroud M, Hemmati S, Dastmalchi S. ChemistrySelect 2021; 6: 6483
- 3b Lévai A. Chem. Heterocycl. Compd. 1997; 33: 647
- 3c Li Y, Wei L, Wan J.-P, Wen C. Tetrahedron 2017; 73: 2323
- 3d Golovanov AA, Odin IS, Gusev DM, Vologzhanina AV, Sosnin IM, Grabovskiy SA. J. Org. Chem. 2021; 86: 7229
- 4a Bégué D, Dargelos A, Wentrup C. J. Org. Chem. 2020; 85: 7952
- 4b Bégué D, Qiao GG, Wentrup C. J. Am. Chem. Soc. 2012; 134: 5339
- 4c Nunes CM, Reva I, Fausto R, Bégué D, Wentrup C. Chem. Commun. 2015; 51: 14712
- 4d Deepthi A, Acharjee N, Sruthi SL, Meenakshy CB. Tetrahedron 2022; 116: 132812
- 5a Wang Y.-G, Zhang J, Lin X.-F, Ding H.-F. Synlett 2003; 1467
- 5b Alizadeh A, Moafi L, Zhu L.-G. Synlett 2016; 27: 595
- 5c Utecht G, Fruziński A, Jasiński M. Org. Biomol. Chem. 2018; 16: 1252
- 6a Wang Y, Rivera Vera CI, Lin Q. Org. Lett. 2007; 9: 4155
- 6b Clovis JS, Eckell A, Huisgen R, Sustmann R. Chem. Ber. 1967; 100: 60
- 6c Padwa A, Nahm S, Sato E. J. Org. Chem. 1978; 43: 1664
- 7a Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 7b Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
- 7c Colella M, Nagaki A, Luisi R. Chem. Eur. J. 2020; 26: 19
- 8a Dallinger D, Gutmann B, Kappe CO. Acc. Chem. Res. 2020; 53: 1330
- 8b Movsisyan M, Delbeke EI. P, Berton JK. E. T, Battilocchio C, Ley SV, Stevens CV. Chem. Soc. Rev. 2016; 45: 4892
- 9a Fitzpatrick DE, Ley SV. Tetrahedron 2018; 74: 3087
- 9b Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TJ, Jensen KF, Monbaliu J.-CM, Myerson AS, Revalor EM, Snead DR, Stelzer T, Weeranoppanant N, Wong SY, Zhang P. Science 2016; 352: 61
- 10a Breen CP, Nambiar AM. K, Jamison TF, Jensen KF. Trends Chem. 2021; 3: 373
- 10b Gioiello A, Piccinno A, Lozza AM, Cerra B. J. Med. Chem. 2020; 63: 6624
- 10c Baumann M, Moody TS, Smyth M, Wharry S. Org. Process Res. Dev. 2020; 24: 1802
- 10d Baxendale IR, Brocken L, Mallia CJ. Green Process Synth. 2013; 2: 211
- 11a Buglioni L, Raymenants F, Slattery A, Zondag SD. A, Noël T. Chem. Rev. 2022; 122: 2752
- 11b Sambiago C, Noël T. Trends Chem. 2020; 2: 92
- 11c Elliott LD, Knowles JP, Koovits PJ, Maskil KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI. Chem. Eur. J. 2014; 20: 1
- 11d Rehm TH. ChemPhotoChem 2020; 4: 235
- 11e Di Filippo M, Bracken C, Baumann M. Molecules 2020; 25: 356
- 12 Ley SV, Chen Y, Fitzpatrick DE, May OS. Curr. Opin. Green Sustainable Chem. 2020; 25: 100353
- 13 Donnelly K, Baumann M. J. Flow Chem. 2021; 11: 223
- 14 Ramanathan M, Wang Y.-H, Liu S.-T. Org. Lett. 2015; 17: 5886
- 15 CCDC 2221466, CCDC 2221467, and CCDC 2221468 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 16a Bracken C, Baumann M. J. Org. Chem. 2020; 85: 2607
- 16b Donnelly K, Baumann M. Chem. Commun. 2021; 57: 2871
- 17a Bracken C, Batsanov AS, Baumann M. SynOpen 2021; 5: 29
- 17b Di Filippo M, Baumann M. Eur. J. Org. Chem. 2020; 2020: 6199
- 18 Oligomerisation of the dipolarophile was observed when using the high-power LED emitting at 365 nm.