Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(18): 2959-2968
DOI: 10.1055/a-1996-8054
DOI: 10.1055/a-1996-8054
paper
Special Issue Electrochemical Organic Synthesis
Electrochemical Synthesis of 3-Sulfonylindoles via Annulation of o-Alkynylanilines with Sodium Sulfinates
Financial support provided by the Natural Science Foundation of China (32171724) and Jiangsu (BK20210607) is warmly acknowledged.
Abstract
An electrochemical method to synthesize 3-sulfonylindoles from o-alkynylanilines and sodium sulfinates is disclosed. Featuring external oxidant-free, transition metal-free, and mild conditions, this sustainable approach tolerates a wide range of functional groups. Mechanistic studies are presented, revealing that (E)-bis(sulfonyl)stilbenes appear to be the key intermediates in this transformation.
Key words
organic electrochemistry - indoles - 3-sulfonylindoles - oxidation - sodium sulfinates - alkynylanilinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1996-8054.
- Supporting Information
Publication History
Received: 27 October 2022
Accepted after revision: 12 December 2022
Accepted Manuscript online:
12 December 2022
Article published online:
10 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ishikura M, Abe T, Choshi T, Hibino S. Nat. Prod. Rep. 2015; 32: 1389
- 1b Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
- 1c Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 1d de Sa Alves FR, Barreiro EJ, Fraga CA. M. Mini-Rev. Med. Chem. 2009; 9: 782
- 1e Ban Y, Murakami Y, Iwasawa Y, Tsuchiya M, Takano N. Med. Res. Rev. 1988; 8: 231
- 2a Kim T, Ha MW, Kim J. Molecules 2022; 27: 2171
- 2b Rago AJ, Dong G. Green Synth. Catal. 2021; 2: 216
- 2c Yu Y, Zhong J.-S, Xu K, Yuan Y, Ye K.-Y. Adv. Synth. Catal. 2020; 362: 2102
- 2d Neto JS. S, Zeni G. Org. Chem. Front. 2020; 7: 155
- 2e Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
- 2f Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: PR215
- 3a Chen G, Xu B. Org. Lett. 2021; 23: 9157
- 3b Ma F, Qian J, Lu P, Wang Y. Org. Biomol. Chem. 2018; 16: 439
- 3c Wu C, Zhao F, Du Y, Zhao L, Chen L, Wang J, Liu H. RSC Adv. 2016; 6: 70682
- 3d Liu J, Liu Z, Liao P, Bi X. Org. Lett. 2014; 16: 6204
- 3e Gao D, Back TG. Chem. Eur. J. 2012; 18: 14828
- 4a Xia Q, Bao X, Sun C, Wu D, Rong X, Liu Z, Gu Y, Zhou J, Liang G. Eur. J. Med. Chem. 2018; 160: 120
- 4b Bernotas RC, Antane S, Shenoy R, Le V.-D, Chen P, Harrison BL, Robichaud AJ, Zhang GM, Smith D, Schechter LE. Bioorg. Med. Chem. Lett. 2010; 20: 1657
- 4c Lieben CK. J, Blokland A, Sik A, Sung E, van Nieuwenhuizen P, Schreiber R. Neuropsychopharmacology 2005; 30: 2169
- 4d Bernotas R, Lenicek S, Antane S, Zhang GM, Smith D, Coupet J, Harrison B, Schechter LE. Bioorg. Med. Chem. Lett. 2004; 14: 5499
- 4e Silvestri R, De Martino G, La Regina G, Artico M, Massa S, Vargiu L, Mura M, Loi AG, Marceddu T, La Colla P. J. Med. Chem. 2003; 46: 2482
- 4f Heffernan GD, Coghlan RD, Manas ES, McDevitt RE, Li Y, Mahaney PE, Robichaud AJ, Huselton C, Alfinito P, Bray JA, Cosmi SA, Johnston GH, Kenney T, Koury E, Winneker RC, Deecher DC, Trybulski EJ. Bioorg. Med. Chem. 2009; 17: 7802
- 5a Qiu J.-K, Hao W.-J, Wang D.-C, Wei P, Sun J, Jiang B, Tu SJ. Chem. Commun. 2014; 50: 14782
- 5b Rahman M, Ghosh M, Hajra A, Majee A. J. Sulfur Chem. 2012; 34: 342
- 5c Singh DU, Singh PR, Samant SD. Tetrahedron Lett. 2004; 45: 9079
- 5d Yadav JS, Reddy BV. S, Krishna AD, Swamy T. Tetrahedron Lett. 2003; 44: 6055
- 6 Nakamura I, Yamagishi U, Song D, Konta S, Yamamoto Y. Angew. Chem. Int. Ed. 2007; 46: 2284
- 7 Meesin J, Pohmakotr M, Reutrakul V, Soorukram D, Leowanawat P, Kuhakarn C. Org. Biomol. Chem. 2017; 15: 3662
- 8 Chen F, Meng Q, Han S.-Q, Han B. Org. Lett. 2016; 18: 3330
- 9 Rohokale RS, Tambe SD, Kshirsagar UA. Org. Biomol. Chem. 2018; 16: 536
- 10a Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
- 10b Yuan Y, Yang J, Lei A. Chem. Soc. Rev. 2021; 50: 10058
- 10c Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
- 10d Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
- 10e Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
- 10f Little RD. A. J. Org. Chem. 2020; 85: 13375
- 10g Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. A. Acc. Chem. Res. 2020; 53: 72
- 10h Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
- 10i Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
- 10j Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 11a Liu W, Hao L, Zhang J, Zhu T. ChemSusChem 2022; 15: e202102557
- 11b Ye X, Wu X, Guo S.-r, Huang D, Sun X. Tetrahedron Lett. 2021; 81: 153368
- 11c Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. ChemSusChem 2021; 14: 4878
- 11d Bao R, Feng Y, Deng D, Huang D, Sun X. Asian J. Org. Chem. 2021; 10: 1884
- 11e Zhao S, Chen K, Zhang L, Yang W, Huang D. Adv. Synth. Catal. 2020; 362: 3516
- 11f Mulina OM, Ilovaisky AI, Parshin VD, Terent’ev AO. Adv. Synth. Catal. 2020; 362: 4579
- 11g Dong D.-Q, Han Q.-Q, Yang S.-H, Song J.-C, Li N, Wang Z.-L, Xu X.-M. ChemistrySelect 2020; 5: 13103
- 12a Li R, Yuan D, Ping M, Zhu Y, Ni S, Li M, Wen L, Zhang L.-B. Chem. Sci. 2022; 13: 9940
- 12b Fang Y, Xu D, Yu Y, Tang R, Dai S, Wang Z, Zhang W. Eur. J. Org. Chem. 2022; e202200091
- 12c Kim W, Kim HY, Oh K. J. Org. Chem. 2021; 86: 15973
- 12d Gu Q, Wang X, Liu X, Wu G, Xie Y, Shao Y, Zhao Y, Zeng X. Org. Biomol. Chem. 2021; 19: 8295
- 12e Mo Z.-Y, Zhang Y.-Z, Huang G.-B, Wang X.-Y, Pan Y.-M, Tang H.-T. Adv. Synth. Catal. 2020; 362: 2160
- 12f Lai Y.-L, Mo Y, Yan S, Zhang S, Zhu L, Luo J, Guo H, Cai J, Liao J. RSC Adv. 2020; 10: 33155
- 12g Luo M.-J, Liu B, Li Y, Hu M, Li J.-H. Adv. Synth. Catal. 2019; 361: 1538
- 13 Meng X, Xu H, Cao X, Cai X.-M, Luo J, Wang F, Huang S. Org. Lett. 2020; 22: 6827
- 14 Meng X, Xu H, Liu R, Zheng Y, Huang S. Green Chem. 2022; 24: 4754
- 15a Liu K, Song C, Lei A. Org. Biomol. Chem. 2018; 16: 2375
- 15b Tang H.-T, Jia J.-S, Pan Y.-M. Org. Biomol. Chem. 2020; 18: 5315
- 16 Xu H, Meng X, Zheng, Luo J, Huang S. Chin. J. Org. Chem. 2021; 41: 4696
- 17 CCDC 2201426 (5) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 18a Wang Q.-Q, Xu K, Jiang Y.-Y, Liu Y.-G, Sun B.-G, Zeng C.-C. Org. Lett. 2017; 19: 5517
- 18b Jiang Y.-Y, Wang Q.-Q, Liang S, Hu L.-M, Little RD, Zeng C.-C. J. Org. Chem. 2016; 81: 4713
- 19 He M, Chen N, Zhou T, Li Q, Li H, Lang M, Wang J, Peng S. Org. Lett. 2019; 21: 9559
- 20 Zhang Z.-Q, Xu Y.-H, Dai J.-C, Li Y, Sheng J, Wang X.-S. Org. Lett. 2021; 6: 2194
- 21 Yin Y, Ma W, Chai Zh, Zhao G. J. Org. Chem. 2007; 72: 5731
- 22 Johnson TC, Elbert BL, Farley AJ. M, Gorman TW, Genicot C, Lallemand B, Pasau P, Flasz J, Castro JL, MacCoss M, Dixon DJ, Paton RS, Schofield CJ, Smith MD, Willis MC. Chem. Sci. 2018; 9: 629
- 23 Yao Y, Yin Z, He F-S, Qin X, Xie W, Wu J. Chem. Commun. 2021; 57: 2883