Subscribe to RSS
DOI: 10.1055/a-1998-9146
Empfehlungen bei progredienter Myopie im Kindes- und Jugendalter[*]
Stellungnahme von DOG, BVA und der Bielschowsky Gesellschaft für Schielforschung und Neuroophthalmologie. Stand Juni 2022Recommendations for Progressive Myopia in Childhood and Adolescence. Statement of the DOG, BVA and the Bielschowsky Society for Strabismus Research and NeuroophthalmologyStatus June 2022
Zusammenfassung
Seit der letzten und gleichzeitig ersten Stellungnahme der deutschen ophthalmologischen Fachgesellschaften zu den Möglichkeiten der Minderung von Myopieprogression im Kindes- und Jugendalter haben sich in der klinischen Forschung viele neue Details und Aspekte ergeben. Die nun vorliegende, zweite Stellungnahme aktualisiert das bisherige Dokuments und konkretisiert die Empfehlungen sowohl zum Seh- und Leseverhalten als auch zu den pharmakologischen und optischen Therapieoptionen, die in der Zwischenzeit sowohl verfeinert als auch neu entwickelt wurden.
Abstract
Since the last and at the same time first statement of the German ophthalmological societies on the possibilities of reducing myopia progression in childhood and adolescence, many new details and aspects have emerged in clinical research. This second statement updates the previous document and specifies the recommendations on visual and reading behavior as well as on pharmacological and optical therapy options, which have been both refined and newly developed in the meantime.
Schlüsselwörter
Kinder - Jugendliche - Myopie - Risikofaktor - Atropin - Kontaktlinsen - MultisegmentgläserKey words
children - adolescents - myopia - risk factor - atropine - contact lenses - multisegment spectacles* Diese Leitlinie erscheint ebenfalls in der Zeitschrift Die Ophthalmologie, Springer Verlag, Heidelberg. Das Redaktionskomitee dieser Stellungnahme wird am Beitragsende gelistet.
Publication History
Article published online:
22 February 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Wang CY, Hsu NW, Yang YC. et al. Premyopia at preschool age: population-based evidence of prevalence and risk factors from a serial survey in Taiwan. Ophthalmology 2022; 129: 880-889
- 2 Li SM, Wei S, Atchison DA. et al. Annual incidences and progressions of myopia and high myopia in Chinese schoolchildren based on a 5-year cohort study. Invest Ophthalmol Vis Sci 2022; 63: 8
- 3 Tsai TH, Liu YL, Ma IH. et al. Evolution of the prevalence of myopia among Taiwanese schoolchildren: a review of survey data from 1983 through 2017. Ophthalmology 2021; 128: 290-301
- 4 Williams KM, Verhoeven VJM, Cumberland P. et al. Prevalence of refractive error in europe: the European eye epidemiology (E(3)) consortium. Eur J Epidemiol 2015; 30: 305-315
- 5 Wesemann W. Analyse der Brillenstärken zeigt keine Zunahme der Myopie in Deutschland von 2000 bis 2015. Ophthalmologe 2018; 115: 409-417
- 6 Schuster AK, Krause L, Kuchenbäcker C. et al. Prävalenz von Kurzsichtigkeit und deren Veränderung bei Kindern und Jugendlichen. Dtsch Arztebl Int 2020; 117: 855-860
- 7 Schuster AK, Elflein HM, Pokora R. et al. Prävalenz und Risikofaktoren der Kurzsichtigkeit bei Kindern und Jugendlichen in Deutschland – Ergebnisse der KiGGS-Studie. Klin Padiatr 2017; 229: 234-240
- 8 Truckenbrod C, Meigen C, Brandt M. et al. Longitudinal analysis of axial length growth in a German cohort of healthy children and adolescents. Ophthalmic Physiol Opt 2021; 41: 532-540
- 9 Tideman JWL, Snabel MCC, Tedja MS. et al. Association of axial length with risk of uncorrectable visual impairment for europeans with myopia. JAMA Ophthalmol 2016; 134: 1355-1363
- 10 Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye. I. The posterior fundus. Trans Am Ophthalmol Soc 1970; 68: 312-334
- 11 Daien V, Le Pape A, Heve D. et al. Incidence and characteristics of cataract surgery in France from 2009 to 2012: a national population study. Ophthalmology 2015; 122: 1633-1638
- 12 Gerstenberger E, Stoffelns B, Nickels S. et al. Incidence of retinal detachment in Germany: results from the Gutenberg health study. Ophthalmologica 2021; 244: 133-140
- 13 Enthoven CA, Tideman JWL, Polling JR. et al. Interaction between lifestyle and genetic susceptibility in myopia: the generation R study. Eur J Epidemiol 2019; 34: 777-784
- 14 Ghorbani Mojarrad N, Williams C, Guggenheim JA. A genetic risk score and number of myopic parents independently predict myopia. Ophthalmic Physiol Opt 2018; 38: 492-502
- 15 Mirshahi A, Ponto KA, Hoehn R. et al. Myopia and level of education: results from the Gutenberg health study. Ophthalmology 2014; 121: 2047-2052
- 16 Gwiazda J, Deng L, Manny R. COMET Study Group. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Invest Ophthalmol Vis Sci 2014; 55: 752-758
- 17 Picotti C, Sanchez V, Fernandez Irigaray L. et al. Rapid progression of myopia at onset during home confinement. J AAPOS 2022; 26: 65.e1-65.e4
- 18 Wong CW, Tsai A, Jonas JB. et al. Digital screen time during the COVID-19 pandemic: risk for a further myopia boom?. Am J Ophthalmol 2021; 223: 333-337
- 19 Muralidharan AR, Lança C, Biswas S. et al. Light and myopia: from epidemiological studies to neurobiological mechanisms. Ther Adv Ophthalmol 2021; 13
- 20 Gajjar S, Ostrin LA. A systematic review of near work and myopia: measurement, relationships, mechanisms and clinical corollaries. Acta Ophthalmol 2021; 100: 376-387
- 21 Hughes RPJ, Read SA, Collins MJ. et al. Axial elongation during short-term accommodation in myopic and nonmyopic children. Invest Ophthalmol Vis Sci 2022; 63: 12
- 22 Yang YC, Hsu NW, Wang CY. et al. Prevalence trend of myopia after promoting eye care in preschoolers: a serial survey in Taiwan before and during the Coronavirus disease 2019 pandemic. Ophthalmology 2022; 129: 181-190
- 23 Pineles SL, Kraker RT, VanderVeen DK. et al. Atropine for the prevention of myopia progression in children: a report by the American academy of ophthalmology. Ophthalmology 2017; 124: 1857-1866
- 24 Huang J, Wen D, Wang Q. et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology 2016; 123: 697-708
- 25 Walline JJ, Lindsley KB, Vedula SS. et al. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev 2020; (01) CD4916
- 26 Moriche-Carretero M, Revilla-Amores R, Diaz-Valle D. et al. Myopia progression and axial elongation in Spanish children: efficacy of atropine 0.01 % eye-drops. J Fr Ophtalmol 2021; 44: 1499-1504
- 27 Lee SSY, Mackey DA, Lingham G. et al. Western Australia atropine for the treatment of myopia (WA-ATOM) study: rationale, methodology and participant baseline characteristics. Clin Experiment Ophthalmol 2020; 48: 569-579
- 28 Azuara-Blanco A, Logan N, Strang N. et al. Low-dose (0.01 %) atropine eye-drops to reduce progression of myopia in children: a multicentre placebo-controlled randomised trial in the UK (CHAMP-UK)-study protocol. Br J Ophthalmol 2020; 104: 950-955
- 29 Chia A, Chua WH, Cheung YB. et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5 %, 0.1 %, and 0.01 % doses (atropine for the treatment of myopia 2). Ophthalmology 2012; 119: 347-354
- 30 Yam JC, Jiang Y, Tang SM. et al. Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05 %, 0.025 %, and 0.01 % atropine eye drops in myopia control. Ophthalmology 2019; 126: 113-124
- 31 Yam JC, Li FF, Zhang X. et al. Two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) study: phase 2 report. Ophthalmology 2020; 127: 910-919
- 32 Wei S, Li SM, An W. et al. Safety and efficacy of low-dose atropine eyedrops for the treatment of myopia progression in Chinese children: a randomized clinical trial. JAMA Ophthalmol 2020; 138: 1178-1184
- 33 Polling JR, Tan E, Driessen S. et al. A 3-year follow-up study of atropine treatment for progressive myopia in Europeans. Eye (Lond) 2020; 34: 2020-2028
- 34 Wang YR, Bian HL, Wang Q. Atropine 0.5 % eyedrops for the treatment of children with low myopia: a randomized controlled trial. Medicine 2017; 96: e7371
- 35 Joachimsen L, Farassat N, Bleul T. et al. Side effects of topical atropine 0.05 % compared to 0.01 % for myopia control in German school children: a pilot study. Int Ophthalmol 2021; 41: 2001-2008
- 36 Austermann H, Schaeffel F, Mathis U. et al. Corneal penetration of low-dose atropine eye drops. J Clin Med 2021; 10: 588
- 37 Fu A, Stapleton F, Wei L. et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression. Br J Ophthalmol 2020; 104: 1535-1541
- 38 Joachimsen L, Böhringer D, Gross NJ. et al. A pilot study on the efficacy and safety of 0.01 % atropine in German schoolchildren with progressive myopia. Ophthalmol Ther 2019; 8: 427-433
- 39 Hieda O, Hiraoka T, Fujikado T. et al. Efficacy and safety of 0.01 % atropine for prevention of childhood myopia in a 2-year randomized placebo-controlled study. Jpn J Ophthalmol 2021; 65: 315-325
- 40 Ha A, Kim SJ, Shim SR. et al. Efficacy and safety of 8 atropine concentrations for myopia control in children: a network meta-analysis. Ophthalmology 2022; 129: 322-333
- 41 Chen C, Yao J. Efficacy and adverse effects of atropine for myopia control in children: a meta-analysis of randomised controlled trials. J Ophthalmol 2021;
- 42 Yu Z, Zhong A, Zhao X. et al. Efficacy and safety of different add power soft contact lenses on myopia progression in children: a systematic review and meta-analysis. Ophthalmic Res 2022;
- 43 Chamberlain P, Peixoto-de-Matos SC, Logan NS. et al. 3-year randomized clinical trial of misight lenses for myopia control. Optom Vis Sci 2019; 96: 556-567
- 44 Queirós A, Amorim-de-Sousa A, Lopes-Ferreira D. et al. Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery. Eye Vis 2018; 5: 12
- 45 Cho P, Cheung SW. Retardation of myopia in orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci 2012; 53: 7077-7085
- 46 Sankaridurg P, Bakaraju RC, Naduvilath T. et al. Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial. Ophthalmic Physiol Opt 2019; 39: 294-307
- 47 Huang Y, Li X, Ding C. et al. Comparison of peripheral refraction and higher-order aberrations between orthokeratology and multifocal soft contact lens designed with highly addition. Graefes Arch Clin Exp Ophthalmol 2022; 260: 1755-1762
- 48 Sun L, Li ZX, Chen Y. et al. The effect of orthokeratology treatment zone decentration on myopia progression. BMC Ophthalmol 2022; 22: 76
- 49 Lam CS, Tang WC, Lee PH. et al. Myopia control effect of defocus incorporated multiple segments (DIMS) spectacle lens in Chinese children: results of a 3-year follow-up study. Br J Ophthalmol 2022; 106: 1110-1114
- 50 Bao J, Huang Y, Li X. et al. Spectacle lenses with aspherical lenslets for myopia control vs. single-vision spectacle lenses: a randomized clinical trial. JAMA Ophthalmol 2022; 140: 472-478
- 51 Lam CSY, Tang WC, Qi H. et al. Effect of defocus incorporated multiple segments spectacle lens wear on visual function in myopic Chinese children. Transl Vis Sci Technol 2020; 9: 11
- 52 Kaymak H, Graff B, Neller K. et al. Myopietherapie und Prophylaxe mit “Defocus Incorporated Multiple Segments”-Brillengläsern. Ophthalmologe 2021; 118: 1280-1286
- 53 Gao C, Wan S, Zhang Y. et al. The efficacy of atropine combined with orthokeratology in slowing axial elongation of myopia children: a meta-analysis. Eye Contact Lens 2021; 47: 98-103