Synthesis 2023; 55(18): 2979-2984 DOI: 10.1055/a-2000-8231
paper
Special Issue Electrochemical Organic Synthesis
Comparative Investigation of Electrocatalytic Oxidation of Cyclohexene by Proton-Exchange Membrane and Anion-Exchange Membrane Electrolyzers
Yuto Ido
a
Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
,
Yugo Shimizu
a
Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
,
Naoki Shida∗
a
Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
b
Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
,
a
Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
b
Advanced Chemical Energy Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
› Author Affiliations This work was financially supported by JST CREST Grant No. JP65R1204400, Japan.
Abstract
Electrocatalytic oxidation of cyclohexene was performed in proton-exchange membrane (PEM) and anion-exchange membrane (AEM) electrolyzers. For the efficient electrocatalytic oxidation, the anode catalyst material, applied potential, and solvent used were optimized. In addition, the differences in reactivity between the PEM and AEM electrolyzers were clarified and a mechanism for the oxidation of cyclohexene in each electrolyzer was proposed.
Key words
electrocatalytic oxidation -
proton-exchange membrane electrolyzer -
anion-exchange membrane electrolyzer -
cyclohexene
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2000-8231.
Supporting Information
Publication History
Received: 28 November 2022
Accepted: 19 December 2022
Accepted Manuscript online: 19 December 2022
Article published online: 17 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Hughes MD,
Xu YJ,
Jenkins P,
McMorn P,
Landon P,
Enache DI,
Carley AF,
Attard GA,
Hutchings GJ,
King F,
Stitt EH,
Johnston P,
Griffin K,
Kiely CJ.
Nature 2005; 437: 1132
1b
Matsumoto T,
Ueno M,
Wang N,
Kobayashi S.
Chem. Asian J. 2008; 3: 196
1c
Brydon RR. O,
Peng A,
Qian L,
Kung HH,
Broadbelt LJ.
Ind. Eng. Chem. Res. 2018; 57: 4832
2a
van de Vyver S,
Román-Leshkov Y.
Catal. Sci. Technol. 2013; 3: 1465
2b
Delor M,
Scattergood PA,
Sazanovich IV,
Parker AW,
Greetham GM,
Meijer AJ. H. M,
Towrie M,
Weinstein JA.
Science 2014; 346: 1492
2c
Kohantorabi M,
Gholami MR.
Mater. Chem. Phys. 2018; 213: 472
2d
Shahabi Nejad M,
Behzadi S,
Sheibani H.
Appl. Organomet. Chem. 2019; 33: e5245
3
Yuan Y,
Lei A.
Nat. Commun. 2020; 11: 802
4
Schäfer HJ.
C. R. Chim. 2011; 14: 745
5
Phillips R,
Dunnill CW.
RSC Adv. 2016; 6: 100643
6
Roth HG,
Romero NA,
Nicewicz DA.
Synlett 2016; 27: 714
7
Yamanaka I,
Furukawa T,
Otsuka K.
Chem. Commun. 2000; 2209
8a
Vincent I,
Bessarabov D.
Renew. Sustain. Energy Rev. 2018; 81: 1690
8b
Xu D,
Stevens MB,
Cosby MR,
Oener SZ,
Smith AM,
Enman LJ,
Ayers KE,
Capuano CB,
Renner JN,
Danilovic N,
Li Y,
Wang H,
Zhang Q,
Boettcher SW.
ACS Catal. 2019; 9: 7
9a
Carmo M,
Fritz DL,
Mergel J,
Stolten D.
Int. J. Hydrog. Energy 2013; 38: 4901
9b
Rodríguez-Peña M,
Barrios Pérez JA,
Llanos J,
Sáez C,
Rodrigo MA,
Barrera-Díaz CE.
Curr. Opin. Electrochem. 2021; 27: e100697
10a
Jörissen J.
Electrochim. Acta 1996; 41: 553
10b
Green SK,
Tompsett GA,
Kim HJ,
Kim WB,
Huber GW.
ChemSusChem 2012; 5: 2410
10c
Takano K,
Tateno H,
Matsumura Y,
Fukazawa A,
Kashiwagi T,
Nakabayashi K,
Nagasawa K,
Mitsushima S,
Atobe M.
Bull. Chem. Soc. Jpn. 2016; 89: 1178
10d
Fukazawa A,
Minoshima J,
Tanaka K,
Hashimoto Y,
Kobori Y,
Sato Y,
Atobe M.
ACS Sustain. Chem. Eng. 2019; 7: 11050
10e
Fukushima T,
Yamauchi M.
Chem. Commun. 2019; 55: 14721
10f
Fukazawa A,
Tanaka K,
Hashimoto Y,
Sato Y,
Atobe M.
Electrochem. Commun. 2020; 115: 106734
10g
Fukazawa A,
Shimizu Y,
Shida N,
Atobe M.
Org. Biomol. Chem. 2021; 19: 7363
10h
Kawaguchi D,
Ogihara H,
Kurokawa H.
ChemSusChem 2021; 14: 4431
10i
Nogami S,
Shida N,
Iguchi S,
Nagasawa K,
Inoue H,
Yamanaka I,
Mitsushima S,
Atobe M.
ACS Catal. 2022; 12: 5430
10j
Ido Y,
Fukazawa A,
Furutani Y,
Sato Y,
Shida N,
Atobe M.
ChemSusChem 2021; 14: 1
10k
Nogami S,
Shida N,
Iguchi S,
Nagasawa K,
Inoue H,
Yamanaka I,
Mitsushima S,
Atobe M.
ACS Catal. 2022; 12: 5430
11
Donoeva BG,
Ovoshchnikov DS,
Golovko VB.
ACS Catal. 2013; 3: 2986
12
Nakamura K,
Osamura Y.
J. Am. Chem. Soc. 1993; 115: 9112
13a
Sheldon RA,
Kochi JK.
Metal-Catalyzed Oxidations of Organic Compounds
. Academic Press; New York: 1981
13b
Cainelli G,
Cardillo G.
Chromium Oxidation in Organic Chemistry
. Springer; Berlin: 1984
14
Li D,
Matanovic I,
Lee AS,
Park EJ,
Fujimoto C,
Chung HT,
Kim YS.
ACS Appl. Mater. Interfaces 2019; 11: 9696
15
Miyake J,
Taki R,
Mochizuki T,
Shimizu R,
Akiyama R,
Uchida M,
Miyatake K.
Sci. Adv. 2017; 3: 1
16
Padgett E,
Yarlagadda V,
Holtz ME,
Ko M,
Levin BD. A,
Kukreja RS,
Ziegelbauer JM,
Andrews RN,
Ilavsky J,
Kongkanand A,
Muller DA.
J. Electrochem. Soc. 2019; 166: F198