Subscribe to RSS
DOI: 10.1055/a-2001-6888
Indication of Pd–C or Cu–C Intermediates in Bimetallic Nanoclusters During Pd/Au-PVP- or Cu/Au-PVP-Catalyzed Oxidations of endo-4-Oxatricyclo[5.2.1.02,6]-8-decene and Tetrahydro-γ-carbolines
We are grateful to the National Institutes of Health, the National Institute of General Medical Sciences (R01 GM128659) and the National Science Foundation (CHE-1662705) for financial support of this research. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This material was based upon work in part supported by the National Science Foundation under grant no. 1826982 (to D.H.H.) for the purchase of a NMR spectrometer and grant CHE-2018414 (to D.H.H.) for the purchase of an X-ray diffractometer.
Abstract
Catalytic oxidation of tricyclic endo-norbornene-fused tetrahydrofuran with the bimetallic nanocluster Cu/Au-PVP in the presence of H2O2 or t-BuOOH as the oxidant leads to C–H bond oxidation adjacent to the ether function to give 4-oxa-tricyclo[5.2.1.0]-8,9-exo-epoxydecane, however, oxidation with Pd/Au-PVP takes place at the C=C double bond to give the same epoxide and the oxidative three-bond forming dimeric product, dodecahydro-1,4:6,9-dimethanodibenzofurano[2,3-b:7,8-b′]bisoxolane. Formation of the latter product suggests the involvement of a reactive Pd–C intermediate. Similarly, oxidative C–C bond-forming reactions are observed in cycloaddition reactions of N2-Boc-1,2,3,4-tetrahydro-γ-carbolines and 2,3-dihydroxybenzoic acid with Cu/Au-PVP (2–5 mol%) and H2O2 at 25 °C, providing two-bond-forming [4+2] cycloadducts. Under similar reaction conditions, Pd/Au-PVP did not produce the corresponding cycloadduct, indicating a need for complexation between Cu and the carboxylic acid group of 2,3-dihydroxybenzoic acid and the allylic amine function of the γ-carbolines during the cyclization reaction. The reported intermolecular coupling reactions using Pd/Au-PVP or Cu/Au-PVP nanocluster catalysts under oxidative conditions at 25 °C are unprecedented.
Key words
bimetallic nanoclusters - Cu/Au-PVP - Pd/Au-PVP - catalytic C–H oxidation - oxidative C–C bond formationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2001-6888.
- Supporting Information
Publication History
Received: 18 November 2022
Accepted after revision: 20 December 2022
Accepted Manuscript online:
20 December 2022
Article published online:
19 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Roduner E, Kaim W, Sarkar B, Urlacher VB, Pleiss J, Gläser R, Einicke W.-D, Sprenger GA, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu S.-F, Plietker B, Laschat S. ChemCatChem 2013; 5: 82
- 1b Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Org. Process Res. Dev. 2021; 25: 1802
- 1c Guillemard L, Kaplaneris N, Ackermann L, Johansson M. Nat. Rev. Chem. 2021; 5: 522
- 1d Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
- 1e Gupta A, Kumar J, Rahaman A, Singh AK, Bhadra S. Tetrahedron 2021; 98: 132415
- 1f Lukasevics L, Cizikovs A, Grigorjeva L. Chem. Commun. 2021; 57: 10827
- 1g Prabagar B, Yang Y, Shi Z. Chem. Soc. Rev. 2021; 50: 11249
- 1h Ishihara Y, Baran PS. Synlett 2010; 1733
- 2a Fan H, Tong Z, Ren Z, Mishra K, Morita S, Edouarzin E, Gorla L, Averkiev B, Day VW, Hua DH. J. Org. Chem. 2022; 87: 6742 ; and references cited therein
- 2b Baroliya PK, Chopra J, Pal T, Maiti S, Al-Thabaiti SA, Mokhtar M, Maiti B. ChemCatChem 2021; 13: 1
- 2c Hou W, Dehm NA, Scott RW. J. J. Catal. 2008; 253: 22
- 3a Wong PK, Dickson MK, Sterna LL. J. Chem. Soc., Chem. Commun. 1985; 1565
- 3b Mares F, Diamond SE, Regina FJ, Solar JP. J. Am. Chem. Soc. 1985; 107: 3545
- 3c Andrews MA, Cheng C.-WF. J. Am. Chem. Soc. 1982; 104: 4268
- 4a Catellani M, Motti E, Della Ca N. Acc. Chem. Res. 2008; 41: 1512
- 4b Yang T, Kong C, Yang S, Yang Z, Yang S, Ehara M. Chem. Sci. 2020; 11: 113
- 5 Garcia-Cabeza AL, Moreno-Dorado FJ, Ortega MJ, Guerra FM. Synthesis 2016; 48: 2323
- 6 Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE. Dalton Trans. 2015; 44: 17883
- 7 Khoury PR, Goddard JD, Tam W. Tetrahedron 2004; 60: 8103
- 8 Lieb F, Niewohner U, Wendisch D. Liebigs Ann. Chem. 1987; 607
- 9 Smith WL, Garavito RM, DeWitt DL. J. Biol. Chem. 1996; 271: 33157
- 10a Birch SF, Hunter NJ, McAllan DT. J. Org. Chem. 1956; 21: 970
- 10b Culberson CF, Seward JH, Wilder PJr. J. Am. Chem. Soc. 1960; 82: 2541
- 11 Ruano D, Diaz-Garcia M, Alfayate A, Sanchez-Sanchez M. ChemCatChem 2015; 7: 674
- 12a Arai Y, Hayashi K, Matsui M, Koizumi T, Shiro M, Kuriyama K. J. Chem. Soc., Perkin Trans. 1 1991; 1709
- 12b Moritani J, Hasegawa Y, Kayaki Y, Ikariya T. Tetrahedron Lett. 2014; 55: 1188
- 13 Franks MS, Hyatt JA, Welker ME. Org. Process Res. Dev. 2001; 5: 514
- 14 Lok KP, Jakovac IJ, Jones JB. J. Am. Chem. Soc. 1985; 107: 2521
- 15 Nagaraaj P, Vijayakumar V. Org. Chem. Front. 2019; 6: 2570
- 16a Ye J, Lin Y, Liu Q, Xu D, Wu F, Liu B, Gao Y, Chen H. Org. Lett. 2018; 20: 5457
- 16b Lachkar D, Denizot N, Bernadat G, Ahamada K, Beniddir MA, Dumontet V, Gallard J.-F, Guillot R, Leblanc K, N’nang EO, Turpin V, Kouklovsky C, Poupon E, Evanno L, Vincent G. Nat. Chem. 2017; 9: 793
- 17 Kalin JH, Butler KV, Akimova T, Hancock WW, Kozikowski AP. J. Med. Chem. 2012; 55: 639
- 18 Kitajima M, Takayama H, Sakai S.-I. J. Chem. Soc., Perkin Trans. 1 1994; 1573
- 19 Wild U, Schon F, Himmel H.-J. Angew. Chem. Int. Ed. 2017; 56: 16410
- 20 Costas M. Chem. Rec. 2021; 21: 1
- 21 Goll JM, Fillion E. Organometallics 2008; 27: 3622
- 22 Gillis BT, Beck PE. J. Org. Chem. 1963; 28: 1388
- 23 Breuning M, Hauser T, Mehler C, Daschlein C, Strohmann C, Oechsner A, Braunschweig H. Beilstein J. Org. Chem. 2009; 5: No. 81
- 24 Levchenko NK, Segal GM, Torgov IV. Chem. Heterocycl. Compd. 1981; 17: 251
- 25 Rangarajan R, Kumar R, Prabhakar BV, Chandrasekhar P, Mallikarjuna P, Banerjee A. WO2013/042035 A1, 2013