Fortschr Neurol Psychiatr 2023; 91(04): 153-163
DOI: 10.1055/a-2002-5215
Übersichtsarbeit

Gentherapien bei den Motoneuronerkrankungen ALS und SMA

Gene Therapies in Motor Neuron Diseases ALS and SMA
René Günther
1   Klinik und Poliklinik für Neurologie, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
› Institutsangaben

Zusammenfassung

Die Diagnose von Motoneuronerkrankungen wie Amyotrophe Lateralsklerose (ALS) und 5q-assoziierte Spinale Muskelatrophie (SMA) bedeuteten in der Vergangenheit schicksalshafte Machtlosigkeit gegenüber scheinbar unbehandelbaren Erkrankungen mit schwersten motorisch-funktionellen Einschränkungen und teils fatalen Krankheitsverläufen. Jüngste Fortschritte im Verständnis der genetischen Kausalitäten dieser Erkrankungen kombiniert mit Erfolgen in der Entwicklung von gezielten Gentherapiestrategien bewirken eine hoffnungsvolle Wende hin zu erstmals effektiven, innovativen Therapiekonzepten gleichsam als Pionier in der Behandlungsfähigkeit neurodegenerativer Erkrankungen. Während für die SMA seit wenigen Jahren Gentherapien bereits zugelassen werden konnten, befindet sich die Gentherapieerforschung bei der ALS mit ermutigenden Resultaten noch in der klinischen Prüfung. Dieser Artikel gibt einen Überblick über die bisher bekannten genetischen Hintergründe von ALS und SMA sowie deren Gentherapie-Ansätze mit Fokus auf Therapiekandidaten, die sich in klinischen Prüfungen befinden oder bereits die Markzulassung erworben haben.

Abstract

In the past, the diagnosis of motor neuron diseases such as amyotrophic lateral sclerosis (ALS) and 5q-associated spinal muscular atrophy (SMA) meant powerlessness in the face of seemingly untreatable diseases with severe motor-functional limitations and sometimes fatal courses. Recent advances in an understanding of the genetic causalities of these diseases, combined with success in the development of targeted gene therapy strategies, spell hope for effective, innovative therapeutic approaches, pioneering the ability to treat neurodegenerative diseases. While gene therapies have been approved for SMA since a few years, gene therapy research in ALS is still in clinical trials with encouraging results. This article provides an overview of the genetic background of ALS and SMA known to date and gene therapy approaches to them with a focus on therapy candidates that are in clinical trials or have already gained market approval.



Publikationsverlauf

Eingereicht: 07. Oktober 2022

Angenommen: 12. Dezember 2022

Artikel online veröffentlicht:
23. Februar 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Journal of neurology, neurosurgery, and psychiatry 2017; 88: 540-549
  • 2 Kolb SJ, Kissel JT. Spinal Muscular Atrophy. Neurologic clinics 2015; 33: 831-846
  • 3 Logroscino G, Traynor BJ, Hardiman O, Chiò A, Mitchell D, Swingler RJ. et al. Incidence of amyotrophic lateral sclerosis in Europe. Journal of neurology, neurosurgery, and psychiatry 2010; 81: 385-390
  • 4 Brown CA, Lally C, Kupelian V, Flanders WD. Estimated Prevalence and Incidence of Amyotrophic Lateral Sclerosis and SOD1 and C9orf72 Genetic Variants. Neuroepidemiology 2021; 55: 342-53
  • 5 Ryan M, Heverin M, McLaughlin RL, Hardiman O. Lifetime Risk and Heritability of Amyotrophic Lateral Sclerosis. JAMA neurology 2019; 76: 1367-1374
  • 6 Müller K, Brenner D, Weydt P, Meyer T, Grehl T, Petri S. et al. Comprehensive analysis of the mutation spectrum in 301 German ALS families. Journal of neurology, neurosurgery, and psychiatry 2018; 89: 817-827
  • 7 Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. European journal of neurology 2020; 27: 1918-1929
  • 8 Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S. et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. The Lancet Neurology 2012; 11: 323-330
  • 9 Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010; 466: 1069-1075
  • 10 Conforti FL, Spataro R, Sproviero W, Mazzei R, Cavalcanti F, Condino F. et al. Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis. Neurology 2012; 79: 2315-2320
  • 11 Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O. et al. Amyotrophic lateral sclerosis. Lancet (London, England) 2011; 377: 942-955
  • 12 Gordon PH, Cheng B, Katz IB, Pinto M, Hays AP, Mitsumoto H. et al. The natural history of primary lateral sclerosis. Neurology 2006; 66: 647-653
  • 13 Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ. et al. Amyotrophic lateral sclerosis. The Lancet. 2022
  • 14 Visser J, van den Berg-Vos RM, Franssen H, van den Berg LH, Wokke JH, de Jong JM. et al. Disease course and prognostic factors of progressive muscular atrophy. Archives of neurology 2007; 64: 522-528
  • 15 Hu MT, Ellis CM, Al-Chalabi A, Leigh PN, Shaw CE. Flail arm syndrome: a distinctive variant of amyotrophic lateral sclerosis. Journal of neurology, neurosurgery, and psychiatry 1998; 65: 950-951
  • 16 Gamez J, Cervera C, Codina A. Flail arm syndrome of Vulpian-Bernhart's form of amyotrophic lateral sclerosis. Journal of neurology, neurosurgery, and psychiatry 1999; 67: 258
  • 17 Wijesekera LC, Mathers S, Talman P, Galtrey C, Parkinson MH, Ganesalingam J. et al. Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 2009; 72: 1087-1094
  • 18 Al-Chalabi A, Hardiman O, Kiernan MC, Chiò A, Rix-Brooks B, van den Berg LH. Amyotrophic lateral sclerosis: moving towards a new classification system. The Lancet Neurology 2016; 15: 1182-1194
  • 19 Turner MR, Barnwell J, Al-Chalabi A, Eisen A. Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain: a journal of neurology 2012; 1359: 2883-2891
  • 20 Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W. et al. Amyotrophic lateral sclerosis. Nature reviews Disease primers 2017; 3: 17071
  • 21 Leigh PN, Anderton BH, Dodson A, Gallo JM, Swash M, Power DM. Ubiquitin deposits in anterior horn cells in motor neurone disease. Neurosci Lett 1988; 93: 197-203
  • 22 Lowe J, Lennox G, Jefferson D, Morrell K, McQuire D, Gray T. et al. A filamentous inclusion body within anterior horn neurones in motor neurone disease defined by immunocytochemical localisation of ubiquitin. Neurosci Lett 1988; 94: 203-210
  • 23 Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (New York, NY) 2006; 314: 130-133
  • 24 Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Frontiers in neuroscience 2021; 15: 783624
  • 25 Forman MS, Trojanowski JQ, Lee VM. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nature medicine 2004; 10: 1055-1063
  • 26 Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring Harbor perspectives in biology 2017; 9
  • 27 Luh LM, Bertolotti A. Potential benefit of manipulating protein quality control systems in neurodegenerative diseases. Curr Opin Neurobiol 2020; 61: 125-132
  • 28 de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T. et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. Journal of neurology, neurosurgery, and psychiatry 2020; 92: 86-95
  • 29 Weishaupt JH, Hyman T, Dikic I. Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Trends in molecular medicine 2016; 22: 769-83.
  • 30 Tsao W, Jeong YH, Lin S, Ling J, Price DL, Chiang PM. et al. Rodent models of TDP-43: recent advances. Brain research 2012; 1462: 26-39
  • 31 Wong C, Stavrou M, Elliott E, Gregory JM, Leigh N, Pinto AA. et al. Clinical trials in amyotrophic lateral sclerosis: a systematic review and perspective. Brain Commun 2021; 3: fcab242
  • 32 Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. The New England journal of medicine 1994; 330: 585-591
  • 33 Ludolph A, Petri S, Grosskreutz J. Motoneuronerkrankungen S1-Leitlinie 2021. Deutsche Gesellschaft für Neurologie (Hrsg), Leitlinie für Diagnostik und Therapie in der Neurologie. 2021
  • 34 Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). The Cochrane database of systematic reviews 2012; 2012: Cd001447
  • 35 Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM. SOD1 Function and Its Implications for Amyotrophic Lateral Sclerosis Pathology: New and Renascent Themes. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 2015; 21: 519-529
  • 36 Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G. et al. Antisense oligonucleotide therapy for neurodegenerative disease. The Journal of clinical investigation 2006; 116: 2290-2296
  • 37 Mullard A. ALS antisense drug falters in phase III. Nature reviews Drug discovery 2021; 20: 883-885
  • 38 Miller TCM. on behalf of the VALOR Working Group Results from the Phase 3 VALOR study and its open-label extension: evaluating the clinical efficacy and safety of tofersen in adults with ALS and confirmed SOD1 mutation. American Neruological Association Annual Meeting 2021; 2021
  • 39 Miller TMCM, Genge A, Shaw PJ, Sobue G, Cochrane T, Nestorov I, Graham D, Sun P, McNeill M, Fanning L, Ferguson TA, Fradette S. on behalf of the VALOR and OLE Working Group Evaluating Efficacy and Safety of Tofersen in Adults with SOD1-ALS: Results from the Phase 3 VALOR Trial and Open-Label Extention. European Network for the Cure of Amyotrophic Lateral Sclerosis – 20th Meeting June 2022. 2022
  • 40 Miller T, Cudkowicz M, Shaw PJ, Andersen PM, Atassi N, Bucelli RC. et al. Phase 1-2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. The New England journal of medicine 2020; 383: 109-119
  • 41 Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC. et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. New England Journal of Medicine 2022; 387: 1099-1110
  • 42 Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nature reviews Neurology 2018; 14: 544-558
  • 43 Liu Y, Dodart JC, Tran H, Berkovitch S, Braun M, Byrne M. et al. Variant-selective stereopure oligonucleotides protect against pathologies associated with C9orf72-repeat expansion in preclinical models. Nature communications 2021; 12: 847
  • 44 Korobeynikov VA, Lyashchenko AK, Blanco-Redondo B, Jafar-Nejad P, Shneider NA. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nature medicine 2022; 28: 104-116
  • 45 Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 2017; 544: 367-371
  • 46 Mueller C, Berry JD, McKenna-Yasek DM, Gernoux G, Owegi MA, Pothier LM. et al. SOD1 Suppression with Adeno-Associated Virus and MicroRNA in Familial ALS. The New England journal of medicine 2020; 383: 151-158
  • 47 Amado DA, Davidson BL. Gene therapy for ALS: A review. Mol Ther 2021; 29: 3345-3358
  • 48 Mercuri E, Finkel RS, Muntoni F, Wirth B, Montes J, Main M. et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscular disorders: NMD. 2017
  • 49 König K, Pechmann A, Thiele S, Walter MC, Schorling D, Tassoni A. et al. De-duplicating patient records from three independent data sources reveals the incidence of rare neuromuscular disorders in Germany. Orphanet J Rare Dis 2019; 14: 152
  • 50 Vill K, Schwartz O, Blaschek A, Gläser D, Nennstiel U, Wirth B. et al. Newborn screening for spinal muscular atrophy in Germany: clinical results after 2 years. Orphanet J Rare Dis 2021; 16: 153
  • 51 Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80: 155-165
  • 52 Wirth B, Herz M, Wetter A, Moskau S, Hahnen E, Rudnik-Schöneborn S. et al. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. American journal of human genetics 1999; 64: 1340-1356
  • 53 Bussaglia E, Clermont O, Tizzano E, Lefebvre S, Bürglen L, Cruaud C. et al. A frame-shift deletion in the survival motor neuron gene in Spanish spinal muscular atrophy patients. Nature genetics 1995; 11: 335-337
  • 54 Wirth B, Schmidt T, Hahnen E, Rudnik-Schöneborn S, Krawczak M, Müller-Myhsok B. et al. De novo rearrangements found in 2% of index patients with spinal muscular atrophy: mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling. American journal of human genetics 1997; 61: 1102-1111
  • 55 Velasco E, Valero C, Valero A, Moreno F, Hernández-Chico C. Molecular analysis of the SMN and NAIP genes in Spanish spinal muscular atrophy (SMA) families and correlation between number of copies of cBCD541 and SMA phenotype. Human molecular genetics 1996; 5: 257-263
  • 56 Mailman MD, Heinz JW, Papp AC, Snyder PJ, Sedra MS, Wirth B. et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genetics in medicine: official journal of the American College of Medical Genetics 2002; 4: 20-26
  • 57 Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 6307-6311
  • 58 Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Molecular and cellular biology 2006; 26: 1333-1346
  • 59 Gennarelli M, Lucarelli M, Capon F, Pizzuti A, Merlini L, Angelini C. et al. Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochemical and biophysical research communications 1995; 213: 342-348
  • 60 Prior TW, Swoboda KJ, Scott HD, Hejmanowski AQ. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. American journal of medical genetics Part A 2004; 130a: 307-310
  • 61 Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ. et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. American journal of human genetics 2009; 85: 408-413
  • 62 Oprea GE, Kröber S, McWhorter ML, Rossoll W, Müller S, Krawczak M. et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science (New York, NY) 2008; 320: 524-527
  • 63 Prior TW LM, Finanger E. Spinal Muscular Atrophy: GeneReviews® [Internet]; 2020 03.12.2020 (update)
  • 64 Dubowitz V. Ramblings in the history of spinal muscular atrophy. Neuromuscular disorders: NMD 2009; 19: 69-73
  • 65 Wadman RI, Wijngaarde CA, Stam M, Bartels B, Otto LAM, Lemmink HH. et al. Muscle strength and motor function throughout life in a cross- sectional cohort of 180 patients with SMA types 1c-4. European journal of neurology. 2017
  • 66 Wijngaarde CA, Stam M, Otto LAM, Bartels B, Asselman FL, van Eijk RPA. et al. Muscle strength and motor function in adolescents and adults with spinal muscular atrophy. Neurology. 2020
  • 67 Boentert M, Wenninger S, Sansone VA. Respiratory involvement in neuromuscular disorders. Current opinion in neurology 2017; 30: 529-537
  • 68 Wijngaarde CA, Veldhoen ES, van Eijk RPA, Stam M, Otto LAM, Asselman FL. et al. Natural history of lung function in spinal muscular atrophy. Orphanet J Rare Dis 2020; 15: 88
  • 69 Trucco F, Ridout D, Scoto M, Coratti G, Main ML, Muni Lofra R. et al. Respiratory Trajectories in Type 2 and 3 Spinal Muscular Atrophy in the iSMAC Cohort Study. Neurology 2021; 96: e587-e599
  • 70 Talbot K, Tizzano EF. The clinical landscape for SMA in a new therapeutic era. Gene therapy. 2017
  • 71 MacLeod MJ, Taylor JE, Lunt PW, Mathew CG, Robb SA. Prenatal onset spinal muscular atrophy. European journal of paediatric neurology: EJPN: official journal of the European Paediatric Neurology Society 1999; 3: 65-72
  • 72 Dubowitz V. Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. European journal of paediatric neurology: EJPN: official journal of the European Paediatric Neurology Society 1999; 3: 49-51
  • 73 Singh A, Dalal P, Singh J, Tripathi P. Type 0 Spinal Muscular Atrophy in rare association with congenital Contracture and generalized osteopenia. Iranian journal of child neurology 2018; 12: 105-108
  • 74 Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014; 83: 810-817
  • 75 Russman BS, Buncher CR, White M, Samaha FJ, Iannaccone ST. Function changes in spinal muscular atrophy II and III. The DCN/SMA Group. Neurology 1996; 47: 973-976
  • 76 Zerres K, Rudnik-Schöneborn S, Forrest E, Lusakowska A, Borkowska J, Hausmanowa-Petrusewicz I. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci 1997; 146: 67-72
  • 77 Verhaart IEC, Robertson A, Wilson IJ, Aartsma-Rus A, Cameron S, Jones CC. et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy – a literature review. Orphanet J Rare Dis 2017; 12: 124
  • 78 Kölbel H. M-FWGfN. Leitlinie: Spinale Muskelatrophie (SMA), Diagnostik und Therapie AWMF online. 2020
  • 79 Crawford TO, Pardo CA. The neurobiology of childhood spinal muscular atrophy. Neurobiology of disease 1996; 3: 97-110
  • 80 Harding BN, Kariya S, Monani UR, Chung WK, Benton M, Yum SW. et al. Spectrum of neuropathophysiology in spinal muscular atrophy type I. Journal of neuropathology and experimental neurology 2015; 74: 15-24
  • 81 Schrank B, Götz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG. et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 9920-9925
  • 82 Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiology of disease 2017; 102: 11-20
  • 83 Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. Biochimica et biophysica acta Gene regulatory mechanisms 2017; 1860: 299-315
  • 84 Bowerman M, Becker CG, Yanez-Munoz RJ, Ning K, Wood MJA, Gillingwater TH. et al. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Disease models & mechanisms 2017; 10: 943-954
  • 85 Rigo F, Hua Y, Krainer AR, Bennett CF. Antisense-based therapy for the treatment of spinal muscular atrophy. The Journal of cell biology 2012; 199: 21-25
  • 86 Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene therapy 2017; 24: 520-526
  • 87 Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J. et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. The New England journal of medicine 2017; 377: 1723-1732
  • 88 Glanzman AM, Mazzone E, Main M, Pelliccioni M, Wood J, Swoboda KJ. et al. The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscular disorders: NMD 2010; 20: 155-161
  • 89 Pera MC, Coratti G, Forcina N, Mazzone ES, Scoto M, Montes J. et al. Content validity and clinical meaningfulness of the HFMSE in spinal muscular atrophy. BMC neurology 2017; 17: 39
  • 90 Mazzone ES, Mayhew A, Montes J, Ramsey D, Fanelli L, Young SD. et al. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle & nerve 2017; 55: 869-874
  • 91 Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM. et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. The New England journal of medicine 2018; 378: 625-635
  • 92 Darras BT, Chiriboga CA, Iannaccone ST, Swoboda KJ, Montes J, Mignon L. et al. Nusinersen in later-onset spinal muscular atrophy: Long-term results from the phase 1/2 studies. Neurology 2019; 92: e2492-e2506
  • 93 De Vivo DC, Bertini E, Swoboda KJ, Hwu WL, Crawford TO, Finkel RS. et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscular disorders: NMD 2019; 29: 842-56
  • 94 Hagenacker T, Wurster CD, Günther R, Schreiber-Katz O, Osmanovic A, Petri S. et al. Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study. The Lancet Neurology 2020; 19: 317-325
  • 95 Maggi L, Bello L, Bonanno S, Govoni A, Caponnetto C, Passamano L. et al. Nusinersen safety and effects on motor function in adult spinal muscular atrophy type 2 and 3. Journal of neurology, neurosurgery, and psychiatry 2020; 91: 1166-1174
  • 96 Pera MC, Coratti G, Bovis F, Pane M, Pasternak A, Montes J. et al. Nusinersen in pediatric and adult patients with type III spinal muscular atrophy. Annals of clinical and translational neurology 2021; 8: 1622-1634
  • 97 Coratti G, Cutrona C, Pera MC, Bovis F, Ponzano M, Chieppa F. et al. Motor function in type 2 and 3 SMA patients treated with Nusinersen: a critical review and meta-analysis. Orphanet J Rare Dis 2021; 16: 430
  • 98 Sivaramakrishnan M, McCarthy KD, Campagne S, Huber S, Meier S, Augustin A. et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nature communications 2017; 8: 1476
  • 99 Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X, Feng Z. et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science (New York, NY) 2014; 345: 688-693
  • 100 Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R. et al. Risdiplam in Type 1 Spinal Muscular Atrophy. The New England journal of medicine 2021; 384: 915-923
  • 101 Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, Rose K, Xiong H, Zanoteli E. et al. Risdiplam-Treated Infants with Type 1 Spinal Muscular Atrophy versus Historical Controls. The New England journal of medicine 2021; 385: 427-435
  • 102 Trundell D, Le Scouiller S, Gorni K, Seabrook T, Vuillerot C. Validity and Reliability of the 32-Item Motor Function Measure in 2- to 5-Year-Olds with Neuromuscular Disorders and 2- to 25-Year-Olds with Spinal Muscular Atrophy. Neurology and therapy 2020; 9: 575-584
  • 103 Mercuri E, Baranello G, Boespflug-Tanguy O, De Waele L, Goemans N, Kirschner J. et al. Risdiplam in Types 2 and 3 spinal muscular atrophy: a randomised, placebo-controlled, dose-finding trial followed by 24 months of treatment. European journal of neurology. 2022
  • 104 Hahn A, Günther R, Ludolph A, Schwartz O, Trollmann R, Weydt P. et al. Short-term safety results from compassionate use of risdiplam in patients with spinal muscular atrophy in Germany. Orphanet J Rare Dis 2022; 17: 276
  • 105 Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ. et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Science translational medicine 2010; 2: 35ra42
  • 106 Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P. et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Human molecular genetics 2011; 20: 681-693
  • 107 Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW. et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. The New England journal of medicine 2017; 377: 1713-1722
  • 108 Mendell JR, Al-Zaidy SA, Lehman KJ, McColly M, Lowes LP, Alfano LN. et al. Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy. JAMA neurology 2021; 78: 834-841
  • 109 Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. The Lancet Neurology 2021; 20: 284-293
  • 110 Mercuri E, Muntoni F, Baranello G, Masson R, Boespflug-Tanguy O, Bruno C. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. The Lancet Neurology 2021; 20: 832-841
  • 111 Tukov FF, Mansfield K, Milton M, Meseck E, Penraat K, Chand D. et al. Single-Dose Intrathecal Dorsal Root Ganglia Toxicity of Onasemnogene Abeparvovec in Cynomolgus Monkeys. Human gene therapy. 2022
  • 112 Müller-Felber W, Vill K, Schwartz O, Blaschek A, Nennstiel U, Schara U. et al. Neugeborenenscreening auf spinale Muskelatrophie. Monatsschrift Kinderheilkunde. 2021