Osteologie 2023; 32(01): 25-32
DOI: 10.1055/a-2002-5388
Review

Endoprothetische Versorgung von Patienten mit Skelettdysplasien

Joint Replacement Surgery in Patients with Skeletal Dysplasias
Lothar Seefried
1   Osteology, Julius-Maximilians-Universität Würzburg, Wurzburg, Germany
› Author Affiliations

Zusammenfassung

Skelettdysplasien sind häufig assoziiert mit einem hohen Risiko für Gelenkschäden und Arthrose insbesondere der großen Gelenke. Ursache sind je nach Erkrankung in unterschiedlichem Ausmaß sowohl die unterliegenden Stoffwechselstörungen selbst als auch die assoziierten Deformierungen mit konsekutiv häufig unvorteilhafter biomechanischer Belastungssituation. Dadurch ergibt sich bei diesen Patienten regelhaft die Indikation für eine endoprothetische Versorgung und damit verbunden die Frage, ob und wie bzw. unter welchen Voraussetzungen eine solche sicher und nachhaltig durchgeführt werden kann. Wesentliche Herausforderungen in Abweichung von der sonstigen endoprothetischen Routineversorgung sind in diesem Kontext die regelhaft veränderten anatomischen und biomechanischen Verhältnisse, häufig mit Kleinwuchs und der Notwendigkeit entsprechend dimensionierter und ggf. auch anatomisch konfigurierter Implantate. Hinzu kommen erforderliche Überlegungen zu den jeweils geeigneten Möglichkeiten der knöchernen Verankerung vor dem Hintergrund der oftmals kompromittierten Knochenbiologie, verbunden mit der Frage nach perioperativen Verbesserungsmöglichkeiten. Regelhaft müssen dabei auch die Folgen und Implikationen aus früheren Interventionen mit berücksichtigt werden. Dabei gilt es, perspektivisch auch die individuell und erkrankungsspezifisch divergierenden Limitationen bzgl. der postoperativen Rehabilitation und prognostisch absehbare weitere Operationen frühzeitig in die Überlegungen mit einzubeziehen. Am Beispiel vergleichsweise häufiger Skelettdyslasien wie der Osteogenesis Imperfecta (OI), der Hyspophosphatasie (HPP) und der X-chromosomalen Hypophosphatasie (XLH) werden im Folgenden konkrete Überlegungen und Konzepte in diesem Zusammenhang dargestellt und diskutiert.

Abstract

Skeletal dysplasias are commonly associated with an increased risk for joint degeneration and osteoarthritis, particularly affecting the large, weight-bearing joints of the lower extremities. Depending on the specific condition, potential causes to varying extent include both, the underlying metabolic disorder which may directly interfere with joint health as well as unfavorable biomechanical loading due to deformities and particular individual aspects of mobilization and mobility. Consecutively, patients with skeletal dysplasias and their physicians are regularly facing debilitating osteoarthritis and the medical need to overcome associated pain and mobility issues by joint replacement surgery, inevitably raising questions if and how this can be safely and sustainably accomplished. Key challenges in this context beyond regular endoprosthetics consist of particular anatomical and biomechanical setting, frequently with short stature, requiring appropriately sized and sometimes individually shaped implants. In addition, the task of optimal implant fixation and retention in a setting of compromised bone quality and bone biology have to be addressed along with questions around potential supportive treatment strategies to improve bone stability and healing capacity perioperatively. This includes considerations around sequelae and implications resulting from previous medical and surgical interventions. Planning requires being mindful about foreseeable challenges regarding postoperative rehabilitation as well as forthcoming surgeries. Conclusively, these considerations and concepts will be illustrated and exemplified, referring to comparatively common skeletal dysplasias like osteogenesis imperfecta (OI), Hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH).



Publication History

Received: 24 November 2022

Accepted: 20 December 2022

Article published online:
28 February 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Patel H, Cichos KH, Moon AS. et al. Patients with musculoskeletal dysplasia undergoing total joint arthroplasty are at increased risk of surgical site Infection. Orthop Traumatol Surg Res 2019; 105: 1297-1301
  • 2 White KK, Bompadre V, Goldberg MJ. et al. Best practices in peri-operative management of patients with skeletal dysplasias. American journal of medical genetics Part A 2017; 173: 2584-2595
  • 3 Clark BM, Sprung J, Weingarten TN. et al. Anesthesia for patients with mucopolysaccharidoses: Comprehensive review of the literature with emphasis on airway management. Bosn J Basic Med Sci 2018; 18: 1-7
  • 4 Wang H, Huang X, Wu A. et al. Management of anesthesia in a patient with osteogenesis imperfecta and multiple fractures: a case report and review of the literature. J Int Med Res 2021; 49: 3000605211028420
  • 5 Sutton CD, Carvalho B. Supraglottic Airway Rescue After Failed Fiberoptic Intubation in a Patient With Osteogenesis Imperfecta: A Case Report. A A Pract 2019; 13: 7-9
  • 6 Liang X, Chen P, Chen C. et al. Comprehensive risk assessments and anesthetic management for children with osteogenesis imperfecta: A retrospective review of 252 orthopedic procedures over 5 years. Paediatr Anaesth 2022; 32: 851-861
  • 7 Etich J, Leßmeier L, Rehberg M. et al. Osteogenesis imperfecta-pathophysiology and therapeutic options. Mol Cell Pediatr 2020; 7: 9-9
  • 8 Marzin P, Cormier-Daire V. New perspectives on the treatment of skeletal dysplasia. Ther Adv Endocrinol Metab 2020; 11: 2042018820904016
  • 9 Sekeitto AR, van der Jagt K, Sikhauli N. et al. Hip Arthroplasty in Patients with Osteogenesis Imperfecta. JBJS Rev 2021; 9
  • 10 Semler O, Kornak U, Oheim R. et al. Genetische Ursachen und Therapie der Osteogenesis imperfecta. Osteologie 2020; 29: 302-310
  • 11 Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis Imperfecta: Mechanisms and signaling pathways connecting classical and rare OI types. Endocrine reviews 2021; 10.1210/endrev/bnab017
  • 12 Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet 2004; 363: 1377-1385 S0140-6736(04)16051-0 [pii]
  • 13 Claeys L, Storoni S, Eekhoff M. et al. Collagen transport and related pathways in Osteogenesis Imperfecta. Human genetics 2021; 140: 1121-1141
  • 14 Carlson SW, Sierra RJ, Trousdale RT. Total Hip Arthroplasty in Patients With Osteogenesis Imperfecta. J Arthroplasty 2020; 35: 2131-2135
  • 15 Roberts TT, Cepela DJ, Uhl RL. et al. Orthopaedic Considerations for the Adult With Osteogenesis Imperfecta. The Journal of the American Academy of Orthopaedic Surgeons 2016; 24: 298-308
  • 16 Sponer P, Korbel M, Kucera T. Challenges of total knee arthroplasty in osteogenesis imperfecta: case report and literature review. J Int Med Res 2022; 50: 3000605221097369
  • 17 Sekeitto AR, van der Jagt K, Sikhauli N. et al. Total knee replacement in Osteogenesis Imperfecta: a case report and review of the literature. Arthroplasty 2021; 3: 4
  • 18 Lu Y, Zhang S, Wang Y. et al. Molecular mechanisms and clinical manifestations of rare genetic disorders associated with type I collagen. Intractable Rare Dis Res 2019; 8: 98-107
  • 19 Gnoli M, Brizola E, Tremosini M. et al. COL1-Related Disorders: Case Report and Review of Overlapping Syndromes. Front Genet 2021; 12: 640558
  • 20 Morlino S, Micale L, Ritelli M. et al. COL1-related overlap disorder: A novel connective tissue disorder incorporating the osteogenesis imperfecta/Ehlers-Danlos syndrome overlap. Clin Genet 2020; 97: 396-406
  • 21 Kim RH, Scuderi GR, Dennis DA. et al. Technical challenges of total knee arthroplasty in skeletal dysplasia. Clin Orthop Relat Res 2011; 469: 69-75
  • 22 Krishnan H, Patel NK, Skinner JA. et al. Primary and revision total hip arthroplasty in osteogenesis imperfecta. Hip Int 2013; 23: 303-309
  • 23 Millan JL, Whyte MP. Alkaline Phosphatase and Hypophosphatasia. Calcif Tissue Int 2016; 98: 398-416
  • 24 Dahir KM, Seefried L, Kishnani PS. et al. Clinical profiles of treated and untreated adults with hypophosphatasia in the Global HPP Registry. Orphanet Journal of Rare Diseases 2022; 17: 277
  • 25 Seefried L, Dahir K, Petryk A. et al. Burden of Illness in Adults With Hypophosphatasia: Data From the Global Hypophosphatasia Patient Registry. J Bone Miner Res 2020;
  • 26 Genest F, Seefried L. Subtrochanteric and diaphyseal femoral fractures in hypophosphatasia-not atypical at all. Osteoporos Int 2018;
  • 27 Genest F, Claußen L, Rak D. et al. Bone mineral density and fracture risk in adult patients with hypophosphatasia. Osteoporos Int 2020;
  • 28 Slooff TJ, Buma P, Schreurs BW. et al. Acetabular and femoral reconstruction with impacted graft and cement. Clin Orthop Relat Res 1996; 108-115
  • 29 Skrinar A, Dvorak-Ewell M, Evins A. et al. The Lifelong Impact of X-Linked Hypophosphatemia: Results From a Burden of Disease Survey. J Endocr Soc 2019; 3: 1321-1334
  • 30 Seefried L, Smyth M, Keen R. et al. Burden of disease associated with X-linked hypophosphataemia in adults: a systematic literature review. Osteoporos Int 2020;
  • 31 Scorcelletti M, Kara S, Zange J. et al. Lower limb bone geometry in adult individuals with X-linked hypophosphatemia: an observational study. Osteoporosis International 2022;
  • 32 Trombetti A, Al-Daghri N, Brandi ML. et al. Interdisciplinary management of FGF23-related phosphate wasting syndromes: a Consensus Statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia. Nature reviews Endocrinology 2022; 18: 366-384
  • 33 Brandi ML, Jan de Beur S, Briot K. et al. Efficacy of Burosumab in Adults with X-linked Hypophosphatemia (XLH): A Post Hoc Subgroup Analysis of a Randomized Double-Blind Placebo-Controlled Phase 3 Study. Calcified Tissue International 2022; 111: 409-418
  • 34 Mills ES, Iorio L, Feinn RS. et al. Joint replacement in X-linked hypophosphatemia. J Orthop 2019; 16: 55-60