Subscribe to RSS
DOI: 10.1055/a-2003-3207
Ruthenium-Catalyzed Regioselective Synthesis of C3-Alkylated Indoles Following Transfer Hydrogenation or Borrowing Hydrogen Strategy
The authors are grateful to National Natural Science Foundation of China (Nos. 22062012 and 22262019) and Scientific Research Projects of Liupanshui Normal University (LPSSYZDZK202201) for their financial support. This work was also supported by Guizhou Key Laboratory of Coal Clean Utilization (qiankehepingtairencai [2020]2001).
Abstract
By employing either borrowing hydrogen or transfer hydrogenation strategy, two straightforward [Ru(p-cymene)Cl2]2-catalyzed methods for regioselective synthesis of C3-alkylated indoles have been developed, utilizing alcohols as H atom donors or alkylating agents. The developed catalytic system could accommodate a broad substrate scope including primary/secondary aliphatic alcohols and substituted indoles, and in most cases providing good yields. Notable features of the developed system include high-activity, easy operation, and air atmosphere.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2003-3207.
- Supporting Information
Publication History
Received: 01 December 2022
Accepted after revision: 22 December 2022
Accepted Manuscript online:
22 December 2022
Article published online:
12 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Norton RS, Wells RJ. J. Am. Chem. Soc. 1982; 104: 3628
- 1b Yamamoto Y, Kurazono M. Bioorg. Med. Chem. Lett. 2007; 17: 1626
- 1c Schwarz N, Alex K, Ali SI, Khedkar V, Tillack A, Beller M. Synlett 2007; 1091
- 1d Nielsen SD, Ruhland T, Rasmussen LK. Synlett 2007; 443
- 1e Della RC, Kneeteman M, Mancini P. Tetrahedron Lett. 2007; 48: 1435
- 1f Cucek K, Vercek B. Synthesis 2008; 1741
- 1g Bondzic BP, Farwick A, Liebich J, Elibracht P. Org. Biomol. Chem. 2008; 6: 3723
- 1h Stuart DR, Laperle MB, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
- 1i Donaldo JR, Taylor RJ. K. Synlett 2009; 59
- 1j Varma PP, Sherigara BS, Mahadevan KM, Hulikal V. Synth. Commun. 2009; 39: 158
- 1k Chen J, Chen J.-J, Yao X, Gao K. Org. Biomol. Chem. 2011; 9: 5334
- 1l Zhang M.-Z, Jia C.-Y, Gu Y.-C, Mulholland N, Turner S, Beattie D, Zhang W.-H, Yang G.-F, Clough J. Eur. J. Med. Chem. 2017; 126: 669
- 1m Baumann T, Brückner R. Angew. Chem. Int. Ed. 2019; 58: 4714
- 1n Neto JS. S, Zeni G. Org. Chem. Front. 2020; 7: 155
- 1o Ye Z.-S, Li J.-C, Wang G. Synthesis 2022; 54: 2133
- 2a Tsou H.-R, MacEwan G, Birnberg G, Zhang N, Brooijmans N, Toral-Barza L, Hollander I, Ayral-Kaloustian S, Yu K. Bioorg. Med. Chem. Lett. 2010; 20: 2259
- 2b Wan Y, Li Y, Yan C, Yan M, Tang Z. Eur. J. Med. Chem. 2019; 183: 111691
- 2c Wild CT, Miszkiel JM, Wold EA, Soto CA, Ding C, Hartley RM, White MA, Anastasio NC, Cunningham KA, Zhou J. J. Med. Chem. 2019; 62: 288
- 3a Roberts RM, Khalaf AA. Friedel–Crafts Alkylation Chemistry: A Century of Discovery . Marcel Dekker; New York: 1984
- 3b Poulsen TB, Jørgensen KA. Chem. Rev. 2008; 108: 2903
- 3c Nanteuil FD, Loup J, Waser J. Org. Lett. 2013; 15: 3738
- 3d Wang X.-W, Hua Y.-Z, Wang M.-C. J. Org. Chem. 2016; 81: 9227
- 4a Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
- 4b Guillena G, Ramón DJ, Yus M. Chem. Rev. 2010; 110: 1611
- 4c Watson AJ. A, Williams JM. J. Science 2010; 329: 635
- 4d Yang Q, Wang Q, Yu Z. Chem. Soc. Rev. 2015; 44: 2305
- 4e Huang F, Liu Z, Yu Z. Angew. Chem. Int. Ed. 2016; 55: 862
- 4f Corma A, Navas J, Sabater MJ. Chem. Rev. 2018; 118: 1410
- 4g Reed-Berendt BG, Polidano K, Morrill LC. Org. Biomol. Chem. 2019; 17: 1595
- 4h Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
- 4i Bartoccini F, Retini M, Piersanti G. Tetrahedron Lett. 2020; 61: 151875
- 5 Whitney S, Grigg R, Derrick A, Keep A. Org. Lett. 2007; 9: 3299
- 6a Kimura M, Futamata M, Mukai R, Tamaru Y. J. Am. Chem. Soc. 2005; 127: 4592
- 6b Putra AE, Takigawa K, Tanaka H, Ito Y, Oe Y, Ohta T. Eur. J. Org. Chem. 2013; 6344
- 7a Siddiki SM. A. H, Kon K, Shimizu K.-I. Chem. Eur. J. 2013; 19: 14416
- 7b Siddiki SM. A. H, Touchy AS, Jamil MA. R, Toyao T, Shimizu K.-I. ACS Catal. 2018; 8: 3091
- 8a Bartolucci S, Mari M, Bedini A, Piersanti G, Spadoni G. J. Org. Chem. 2015; 80: 3217
- 8b Chen S.-J, Lu G.-P, Cai C. RSC Adv. 2015; 5: 70329
- 8c Bartolucci S, Mari M, Gregorio GD, Piersanti G. Tetrahedron 2016; 72: 2233
- 8d Jiang X, Tang W, Xue D, Xiao J, Wang C. ACS Catal. 2017; 7: 1831
- 9a Gregorio GD, Mari M, Bartoccini F, Piersanti G. J. Org. Chem. 2017; 82: 8769
- 9b Polidano K, Allen BD. W, Williams JM. J, Morrill LC. ACS Catal. 2018; 8: 6440
- 9c Seck C, Mbaye MD, Gaillard S, Renaud J.-L. Adv. Synth. Catal. 2018; 360: 4640
- 10a Liu Z, Yang Z, Yu X, Zhang H, Yu B, Zhao Y, Liu Z. Org. Lett. 2017; 19: 5228
- 10b Zhou B, Ma Z, Alenad AM, Kreyenschulte C, Bartling S, Beller M, Jagadeesh RV. Green Chem. 2022; 24: 4566
- 11a Bains AK, Biswas A, Adhikari D. Chem. Commun. 2020; 56: 15442
- 11b Hu M, Jiang Y, Sun N, Hu B, Shen Z, Hu X, Jin L. New J. Chem. 2021; 45: 10057
- 12 Nguyen N.-K, Nam DH, Phuc BV, Nguyen VH, Trinh QT, Hung TQ, Dang TT. Mol. Catal. 2021; 505: 111462
- 13 Zhao M, Li X, Zhang X, Shao Z. Chem. Asian J. 2022; 17: e202200483
- 14a Imm S, Bähn S, Tillack A, Mevius K, Neubert L, Beller M. Chem. Eur. J. 2010; 16: 2705
- 14b Biswas N, Sharma R, Srimani D. Adv. Synth. Catal. 2020; 362: 2902
- 15 Cano R, Yus M, Ramón DJ. Tetrahedron Lett. 2013; 54: 3394
- 16a Brieger G, Nestrick TJ. Chem. Rev. 1974; 74: 567
- 16b Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
- 16c Morris RH. Chem. Soc. Rev. 2009; 38: 2282
- 16d Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
- 16e Zhou X.-Y, Chen X. Org. Biomol. Chem. 2021; 19: 548
- 17a Rass-Hansen J, Falsig H, Joergensen B, Christensen CH. J. Chem. Technol. Biotechnol. 2007; 82: 329
- 17b Gray KA, Zhao L, Emptage M. Curr. Opin. Chem. Biol. 2006; 10: 141
Selected reviews on borrowing hydrogen strategy:
For selective examples on TH, see: