Subscribe to RSS
DOI: 10.1055/a-2004-0951
Synthesis of 1,1-Disubstituted Allenylic Silyl Ethers through Iron-Catalyzed Regioselective C(sp2)–H Functionalization of Allenes
This work was funded by the National Institute of General Medical Sciences (R35GM142945).
![](https://www.thieme-connect.de/media/synthesis/202305/lookinside/thumbnails/ss-2022-m0583-fa_10-1055_a-2004-0951-1.jpg)
Abstract
We report a synthesis of allenylic silyl ethers through iron-catalyzed functionalization of the C(sp2)–H bonds of monosubstituted alkylallenes. In the presence of a cyclopentadienyliron dicarbonyl based catalyst and triisopropylsilyl triflate as a silylation agent, a variety of aryl aldehydes were suitable coupling partners in this transformation, furnishing a collection of 1,1-disubstituted allenylic triisopropylsilyl ethers as products in moderate to excellent yields as a single regioisomer. Lithium bistriflimide was identified as a critical additive in this transformation. The optimized protocol was scalable, and the products were amenable to further transformation to give a number of unsaturated, polyfunctional derivatives.
Key words
coupling - Lewis acids - aldehydes - allenes - cyclopentadienyliron complexes - lithium - contrastericSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2004-0951. Included are copies of the 1H, 19F, and 13C NMR spectra.
- Supporting Information
Publication History
Received: 01 December 2022
Accepted: 26 December 2022
Accepted Manuscript online:
26 December 2022
Article published online:
02 February 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ma S. Chem. Rev. 2005; 105: 2829
- 1b Krause N, Hashmi AS. K. Modern Allene Chemistry, Vol. 1 and 2. Wiley-VCH; Weinheim: 2004
- 1c Schuster HF, Coppola GM. Allenes in Organic Synthesis. Wiley; New York: 1984
- 1d Brummond KM, DeForrest JE. Synthesis 2007; 795
- 2a Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
- 2b Zhang Y.-A, Yaw N, Snyder SA. J. Am. Chem. Soc. 2019; 141: 7776
- 2c Xu D, Drahl MA, Williams LJ. Beilstein J. Org. Chem. 2011; 7: 937
- 2d Rivera-Fuentes P, Diederich F. Angew. Chem. Int. Ed. 2012; 51: 2818
- 2e Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 2f Chu W.-D, Zhang Y, Wang J. Catal. Sci. Technol. 2017; 7: 4570
- 3 Shimizu I, Sugiura T, Tsuji J. J. Org. Chem. 1985; 50: 537
- 4a Krause N, Winter C. Chem. Rev. 2011; 111: 1994
- 4b Zhu C, Liu J, Mai BK, Himo F, Bäckvall J.-E. J. Am. Chem. Soc. 2020; 142: 5751
- 4c Li M.-B, Posevins D, Geoffroy A, Zhu C, Bäckvall J.-E. Angew. Chem. Int. Ed. 2020; 59: 1992
- 4d Guo H, Xu Q, Kwon O. J. Am. Chem. Soc. 2009; 131: 6318
- 5a Ma S, Zhao S. J. Am. Chem. Soc. 1999; 121: 7943
- 5b Kang S.-K, Yamaguchi T, Pyun S.-J, Lee Y.-T, Baik T.-G. Tetrahedron Lett. 1998; 39: 2127
- 6a Furuichi N, Hara H, Osaki T, Mori H, Katsumura S. Angew. Chem. Int. Ed. 2002; 41: 1023
- 6b Furuichi N, Hara H, Osaki T, Nakano M, Mori H, Katsumura S. J. Org. Chem. 2004; 69: 7949
- 7 Sun T, Deutsch C, Krause N. Org. Biomol. Chem. 2012; 10: 5965
- 8 VanBrunt MP, Standaert RF. Org. Lett. 2000; 2: 705
- 9 Deska J, Bäckvall J.-E. Org. Biomol. Chem. 2009; 7: 3379
- 10a Huang X, Ma S. Acc. Chem. Res. 2019; 52: 1301
- 10b Crabbé P, Nassim B, Robert-Lopes M.-T. Org. Synth. 1985; 63: 203
- 10c Crabbé P, Fillion H, André D, Luche J.-L. J. Chem. Soc., Chem. Commun. 1979; 859
- 10d Kuang J, Ma S. J. Org. Chem. 2009; 74: 1763
- 11a Yin SH, Ma SM, Jiao N, Tao FG. Chin. J. Chem. 2002; 20: 707
- 11b Maurin R, Bertrand M. Bull. Soc. Chim. Fr. 1972; 2349
- 11c Buono G. Tetrahedron Lett. 1972; 3257
- 12a Petasis NA, Teets KA. J. Am. Chem. Soc. 1992; 114: 10328
- 12b Lang RW, Hansen H.-J. Helv. Chim. Acta 1980; 63: 438
- 12c Hamlet Z, Barker WD. Synthesis 1970; 543
- 13 Reuter JM, Salomon RG. Tetrahedron Lett. 1978; 3199
- 14 Tang X, Woodward S, Krause N. Eur. J. Org. Chem. 2009; 2836
- 15 Kurono N, Sugita K, Tokuda M. Tetrahedron 2000; 56: 847
- 16 Honda M, Nishizawa T, Nishii Y, Fujinami S, Segi M. Tetrahedron 2009; 65: 9403
- 17a Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Chem. Commun. 2020; 56: 1393
- 17b Wang S.-G, Liu Y, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 18136
- 17c Meyer TH, Oliveira JC. A, Sau SC, Ang NW. J, Ackermann L. ACS Catal. 2018; 8: 9140
- 17d Mo J, Müller T, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 7719
- 17e Li T, Zhang C, Tan Y, Pan W, Rao Y. Org. Chem. Front. 2017; 4: 204
- 17f Thrimurtulu N, Nallagonda R, Volla CM. R. Chem. Commun. 2017; 53: 1872
- 18a Boobalan R, Santhoshkumar R, Cheng C.-H. Adv. Synth. Catal. 2019; 361: 1140
- 18b Liu Y, Che C.-M. Chem. Eur. J. 2010; 16: 10494
- 19a Li S, Tang Z, Wang Y, Wang D, Wang Z, Yu C, Li T, Wei D, Yao C. Org. Lett. 2019; 21: 1306
- 19b Tsuboi S, Kuroda H, Takatsuka S, Fukawa T, Sakai T, Utaka M. J. Org. Chem. 1993; 58: 5952
- 19c Kondo M, Omori M, Hatanaka T, Funahashi Y, Nakamura S. Angew. Chem. Int. Ed. 2017; 56: 8677
- 19d Mbofana CT, Miller SJ. J. Am. Chem. Soc. 2014; 136: 3285
- 19e Hashimoto T, Sakata K, Tamakuni F, Dutton MJ, Maruoka K. Nat. Chem. 2013; 5: 240
- 19f Cowen BJ, Saunders LB, Miller SJ. J. Am. Chem. Soc. 2009; 131: 6105
- 20a Zeng R, Wu S, Fu C, Ma S. J. Am. Chem. Soc. 2013; 135: 18284
- 20b Nakanowatari S, Ackermann L. Chem. Eur. J. 2015; 21: 16246
- 20c Fu C, Ma S. Org. Lett. 2005; 7: 1605
- 21 Schreib BS, Son M, Aouane FA, Baik MH, Carreira EM. J. Am. Chem. Soc. 2021; 143: 21705
- 22 Wang G, Liu X, Chen Y, Yang J, Li J, Lin L, Feng X. ACS Catal. 2016; 6: 2482
- 23a Wang Y, Scrivener SG, Zuo X.-D, Wang R, Palermo PN, Murphy E, Durham AC, Wang Y.-M. J. Am. Chem. Soc. 2021; 143: 14998
- 23b Xia Y, Wade NW, Palermo PN, Wang Y, Wang Y.-M. Chem. Commun. 2021; 57: 13329
- 23c Wang Y, Zhu J, Durham AC, Lindberg H, Wang Y.-M. J. Am. Chem. Soc. 2019; 141: 19594
- 23d Durham AC, Wang Y, Wang Y.-M. Synlett 2020; 31: 1747
- 24 Zhu J, Durham AC, Wang Y, Corcoran JC, Zuo X.-D, Geib SJ, Wang Y.-M. Organometallics 2021; 40: 2295
- 25 Wigman B, Popov S, Bagdasarian AL, Shao B, Benton TR, Williams CG, Fisher SP, Lavallo V, Houk KN, Nelson HM. J. Am. Chem. Soc. 2019; 141: 9140
- 26 Nagashima Y, Sasaki K, Suto T, Sato T, Chida N. Chem. Asian J. 2018; 13: 1024
- 27 Asako S, Ishikawa S, Takai K. ACS Catal. 2016; 6: 3387
- 28 Hoffmann-Röder A, Krause N. Org. Lett. 2001; 3: 2537
- 29 Li J, Kong W, Yu Y, Fu C, Ma S. J. Org. Chem. 2009; 74: 8733