Synthesis 2023; 55(18): 2896-2910
DOI: 10.1055/a-2004-6485
short review
Special Issue Electrochemical Organic Synthesis

Asymmetric Organic Electrochemistry Catalyzed by Transition Metals

Weipeng Zheng
,
Yongsheng Tao
,
Wan Ma
,
Qingquan Lu
This work was supported by the Thousand Young Talents Plan of China­ (Prof. Q. Lu), the National Natural Science Foundation of China (No. 22271227), and Wuhan University.


Abstract

Asymmetric catalysis is one of the most important areas of organic synthetic chemistry. In recent years, with the revival of organic electrochemistry, scientists have begun to try to combine asymmetric catalysis with electrochemistry to build valuable chiral molecules. In this review, we focus on examples of organic electrochemistry catalyzed by transition metals. According to the classification of the interaction of the catalyst with the substrate, we can divide them into two categories: (1) transition metal catalysts as chiral Lewis acids; (2) transition metal catalysts that construct chiral molecules by interacting with substrates through oxidative addition/reductive elimination.

1 Introduction

2 Electrochemical Asymmetric Lewis Acid Catalysis

3 Electrochemical Asymmetric Transition Metal Catalysis

4 Conclusion



Publication History

Received: 07 December 2022

Accepted after revision: 29 December 2022

Accepted Manuscript online:
29 December 2022

Article published online:
02 February 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kolbe H. J. Prakt. Chem. 1847; 41: 137
    • 2a Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem. Rev. 2022; 122: 3180
    • 2b Feng R, Smith JA, Moeller KD. Acc. Chem. Res. 2017; 50: 2346
    • 2c Siu JC, Fu N, Lin S. Acc. Chem. Res. 2020; 53: 547
    • 2d Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 2e Jutand A. Chem. Rev. 2008; 108: 2300
    • 2f Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res. 2020; 53: 45
    • 2g Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 2h Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 2i Shi S.-H, Liang Y, Jiao N. Chem. Rev. 2021; 121: 485
    • 2j Wang F, Stahl SS. Acc. Chem. Res. 2020; 53: 561
    • 2k Yuan Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
    • 2l Elsherbini M, Wirth T. Acc. Chem. Res. 2019; 52: 3287
    • 2m Leech MC, Lam K. Acc. Chem. Res. 2020; 53: 121
    • 2n Jing Q, Moeller KD. Acc. Chem. Res. 2020; 53: 135
    • 2o Noël T, Cao Y, Laudadio G. Acc. Chem. Res. 2019; 52: 2858
    • 2p Ackermann L. Acc. Chem. Res. 2020; 53: 84
    • 2q Mitsudo K, Kurimoto Y, Yoshioka K, Suga S. Chem. Rev. 2018; 118: 5985
    • 2r Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
    • 2s Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
    • 2t Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
    • 2u Meyer TH, Choi I, Tian C, Ackermann L. Chem 2020; 6: 2484
    • 2v Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
    • 2w Yuan Y, Yang J, Lei A. Chem. Soc. Rev. 2021; 50: 10058
    • 2x Ma C, Fang P, Liu Z.-R, Xu S.-S, Xu K, Cheng X, Lei A, Xu H.-C, Zeng C, Mei T.-S. Sci. Bull. 2021; 66: 2412
    • 2y Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
    • 2z Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 2aa Beil SB, Pollok D, Waldvogel SR. Angew. Chem. Int. Ed. 2021; 60: 14750
    • 2ab Jiao K.-J, Xing Y.-K, Yang Q.-L, Qiu H, Mei T.-S. Acc. Chem. Res. 2020; 53: 300
    • 2ac Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
    • 2ad Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 2ae Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 2af Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
    • 2ag Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 2ah Moeller KD. Chem. Rev. 2018; 118: 4817
    • 3a Wang X, Xu X, Wang Z, Fang P, Mei T. Chin. J. Org. Chem. 2020; 40: 3738
    • 3b Yamamoto K, Kuriyama M, Onomura O. Acc. Chem. Res. 2020; 53: 105
    • 3c Lin Q, Li L, Luo S. Chem. Eur. J. 2019; 25: 10033
    • 3d Chang X, Zhang Q, Guo C. Angew. Chem. Int. Ed. 2020; 59: 12612
    • 3e Ghosh M, Shinde VS, Rueping M. Beilstein J. Org. Chem. 2019; 15: 2710
    • 3f Jiao K.-J, Wang Z.-H, Ma C, Liu H.-L, Cheng B, Mei T.-S. Chem. Catal. 2022; 2: 3019
  • 4 Huang X, Zhang Q, Lin J, Harms K, Meggers E. Nat. Catal. 2018; 2: 34
  • 5 Xiong P, Hemming M, Ivlev SI, Meggers E. J. Am. Chem. Soc. 2022; 144: 6964
  • 6 Zhang Q, Chang X, Peng L, Guo C. Angew. Chem. Int. Ed. 2019; 58: 6999
  • 7 Zhang Q, Liang K, Guo C. CCS Chem. 2021; 3: 338
  • 8 Zhang Q, Liang K, Guo C. Angew. Chem. Int. Ed. 2022; 61: e202210632
  • 9 Liang K, Zhang Q, Guo C. Sci. Adv. 2022; 8: eadd7134
  • 10 Onomura O, Arimoto H, Matsumura Y, Demizu Y. Tetrahedron Lett. 2007; 48: 8668
  • 11 Minato D, Arimoto H, Nagasue Y, Demizu Y, Onomura O. Tetrahedron 2008; 64: 6675
  • 12 Amundsen AR, Balko EN. J. Appl. Electrochem. 1992; 22: 810
  • 13 Torii S, Liu P, Tanaka H. Chem. Lett. 1995; 24: 319
  • 14 Torii S, Liu P, Bhuvaneswari N, Amatore C, Jutand A. J. Org. Chem. 1996; 61: 3055
  • 15 Tanaka H, Kuroboshi M, Takeda H, Kanda H, Torii S. J. Electroanal. Chem. 2001; 507: 75
  • 16 Zhao R, Tang Y, Wei S, Xu X, Shi X, Zhang G. React. Kinet., Mech. Catal. 2012; 106: 37
  • 17 Jiao K.-J, Li Z.-M, Xu X.-T, Zhang L.-P, Li Y.-Q, Zhang K, Mei T.-S. Org. Chem. Front. 2018; 5: 2244
  • 18 Dhawa U, Tian C, Wdowik T, Oliveira JC. A, Hao J, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 13451
  • 19 Ding W, Li M, Fan J, Cheng X. Nat. Commun. 2022; 13: 5642
  • 20 Fu N, Song L, Liu J, Shen Y, Siu JC, Lin S. J. Am. Chem. Soc. 2019; 141: 14480
  • 21 Song L, Fu N, Ernst BG, Lee WH, Frederick MO, DiStasio RA. Jr, Lin S. Nat. Chem. 2020; 12: 747
  • 22 Gao PS, Weng XJ, Wang ZH, Zheng C, Sun B, Chen ZH, You SL, Mei TS. Angew. Chem. Int. Ed. 2020; 59: 15254
  • 23 Yan H, Hou ZW, Xu HC. Angew. Chem. Int. Ed. 2019; 58: 4592
    • 24a Meyer TH, Samanta RC, Del Vecchio A, Ackermann L. Chem. Sci. 2021; 12: 2890
    • 24b Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Chem. Eur. J. 2020; 26: 3241
    • 25a Shen T, Lambert TH. Science 2021; 371: 620
    • 25b Huang H, Lambert TH. Angew. Chem. Int. Ed. 2020; 59: 658
    • 25c Huang H, Lambert TH. J. Am. Chem. Soc. 2021; 143: 7247
    • 25d Huang H, Lambert TH. Angew. Chem. Int. Ed. 2021; 60: 11163
    • 25e Huang H, Strater ZM, Lambert TH. J. Am. Chem. Soc. 2020; 142: 1698
    • 25f Huang H, Strater ZM, Rauch M, Shee J, Sisto TJ, Nuckolls C, Lambert TH. Angew. Chem. Int. Ed. 2019; 58: 13318
    • 26a Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087
    • 26b Zhang W, Carpenter KL, Lin S. Angew. Chem. Int. Ed. 2020; 59: 409
    • 27a Bosque I, Magallanes G, Rigoulet M, Karkas MD, Stephenson CR. J. ACS Cent. Sci. 2017; 3: 621
    • 27b Chernowsky CP, Chmiel AF, Wickens ZK. Angew. Chem. Int. Ed. 2021; 60: 21418
    • 27c Cowper NG. W, Chernowsky CP, Williams OP, Wickens ZK. J. Am. Chem. Soc. 2020; 142: 2093
    • 27d Jiang Y, Xu K, Zeng C. CCS Chem. 2022; 4: 1796
    • 27e Lai XL, Shu XM, Song J, Xu HC. Angew. Chem. Int. Ed. 2020; 59: 10626
    • 27f Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Chowdhury AD, Lei A. J. Am. Chem. Soc. 2020; 142: 17693
    • 27g Wang F, Stahl SS. Angew. Chem. Int. Ed. 2019; 58: 6385
    • 27h Xu P, Chen PY, Xu HC. Angew. Chem. Int. Ed. 2020; 59: 14275
    • 27i Yan H, Song J, Zhu S, Xu H.-C. CCS Chem. 2021; 3: 317
    • 27j Yan H, Zhu S, Xu H.-C. Org. Process Res. Dev. 2021; 25: 2608
  • 28 Cai C.-Y, Lai X.-L, Wang Y, Hu H.-H, Song J, Yang Y, Wang C, Xu H.-C. Nat. Catal. 2022; 5: 943
  • 29 Fan W, Zhao X, Deng Y, Chen P, Wang F, Liu G. J. Am. Chem. Soc. 2022; 144: 21674
  • 30 Lai X.-L, Chen M, Wang Y, Song J, Xu H.-C. J. Am. Chem. Soc. 2022; 144: 20201
  • 31 Moutet J.-C, Duboc-Toia C, Ménage S, Tingry S. Adv. Mater. 1998; 10: 665
  • 32 Moutet J.-C, Yao Cho L, Duboc-Toia C, Ménage SC, Riesgo E, Thummel RP. New J. Chem. 1999; 23: 939
  • 33 Wang H, Yue YN, Xiong R, Liu YT, Yang LR, Wang Y, Lu JX. J. Org. Chem. 2021; 86: 16158
  • 34 Huang Y.-Q, Wu Z.-J, Zhu L, Gu Q, Lu X, You S.-L, Mei T.-S. CCS Chem. 2022; 4: 3181
  • 35 Wei W, Scheremetjew A, Ackermann L. Chem. Sci. 2022; 13: 2783
  • 36 Ohno T, Nishioka T, Hisaeda Y, Murakami Y. J. Mole. Struct. (Theochem) 1994; 308: 207
  • 37 Chen B.-L, Zhu H.-W, Xiao Y, Sun Q.-L, Wang H, Lu J.-X. Electrochem. Commun. 2014; 42: 55
  • 38 Li L, Li Y, Fu N, Zhang L, Luo S. Angew. Chem. Int. Ed. 2020; 59: 14347
  • 39 DeLano TJ, Reisman SE. ACS Catal. 2019; 9: 6751
  • 40 Qiu H, Shuai B, Wang YZ, Liu D, Chen YG, Gao PS, Ma HX, Chen S, Mei TS. J. Am. Chem. Soc. 2020; 142: 9872
  • 41 Liu D, Liu ZR, Wang ZH, Ma C, Herbert S, Schirok H, Mei TS. Nat. Commun. 2022; 13: 7318
    • 42a Zhang W, Hong N, Song L, Fu N. Chem. Rec. 2021; 21: 2574
    • 42b Zhang S, Findlater M. Chem. Eur. J. 2022; 28: e202201152
    • 42c Sbei N, Hardwick T, Ahmed N. ACS Sustainable Chem. Eng. 2021; 9: 6148