CC BY 4.0 · Synthesis 2023; 55(09): 1355-1366
DOI: 10.1055/a-2008-9505
special topic
Bürgenstock Special Section 2022 – Future Stars in Organic Chemistry

Exploring Silyl Protecting Groups for the Synthesis of Carbon Nanohoops

Remigiusz B. Kręcijasz
a   Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, Netherlands
,
Juraj Malinčík
b   Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
c   Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia
,
a   Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, Netherlands
c   Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia
› Author Affiliations
This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant No. 949397).


Abstract

The synthesis of topological molecular nanocarbons, such as hoop-like [n]cycloparaphenylenes, requires the use of spatially prearranged, pro-aromatic units to overcome a build-up of large molecular strain in their curved structures. The used cyclohexadienyl units, however, contain tertiary alcohols that need protection to prevent side reactions until the aromatization step that affords the final curved hydrocarbon. Although alkyl and triethylsilyl groups have been successfully applied as protecting groups for this purpose, each suffers from specific drawbacks. Here, we explore the potential of sterically more crowded silyl groups, namely, tert-butyldimethylsilyl and triisopropylsilyl, as alternatives to the established protection strategies. We show that tert-butyldimethylsilyl can be easily installed and removed under mild conditions, displaying markedly higher resistance towards acids or bases than the triethylsilyl group used to date. Unlike in the case of alkyl groups, tert-butyldimethylsilyl also preserves a high stereoselectivity during the nucleophilic additions of ArLi. Furthermore, we demonstrate that both tert-butyldimethylsilyl and triethylsilyl groups can be installed on the same substrate, and that the latter be selectively deprotected. Thus, the high stereoselectivity, improved stability, and easy deprotection make tert-butyldimethylsilyl an excellent protecting group for the synthesis of carbon nanohoops.

Supporting Information



Publication History

Received: 01 November 2022

Accepted after revision: 06 January 2023

Accepted Manuscript online:
06 January 2023

Article published online:
09 February 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sisto TJ, Tian X, Jasti R. J. Org. Chem. 2012; 77: 5857
    • 1b Xia J, Golder MR, Foster ME, Wong BM, Jasti R. J. Am. Chem. Soc. 2012; 134: 19709
    • 1c Yagi A, Segawa Y, Itami K. J. Am. Chem. Soc. 2012; 134: 2962
    • 1d Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K. Nat. Chem. 2013; 5: 572
    • 1e Golder MR, Colwell CE, Wong BM, Zakharov LN, Zhen J, Jasti R. J. Am. Chem. Soc. 2016; 138: 6577
    • 1f Jackson EP, Sisto TJ, Darzi ER, Jasti R. Tetrahedron 2016; 72: 3754
    • 1g Li P, Wong BM, Zakharov LN, Jasti R. Org. Lett. 2016; 18: 1574
    • 1h Li P, Zakharov LN, Jasti R. Angew. Chem. Int. Ed. 2017; 56: 5237
    • 1i Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science 2019; 365: 272
    • 1j Yang Y, Blacque O, Sato S, Juríček M. Angew. Chem. 2021; 133: 1364
    • 1k Malinčík J, Gaikwad S, Mora-Fuentes JP, Boillat MA, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Angew. Chem. Int. Ed. 2022; 61: e2022085
    • 1l Review: Segawa Y, Levine DR, Itami K. Acc. Chem. Res. 2019; 52: 2760
    • 2a Fujitsuka M, Cho DW, Iwamoto T, Yamago S, Majima T. Phys. Chem. Chem. Phys. 2012; 14: 14585
    • 2b Nishihara T, Segawa Y, Itami K, Kanemitsu Y. J. Phys. Chem. Lett. 2012; 3: 3125
    • 2c Adamska L, Nayyar I, Chen H, Swan AK, Oldani N, Fernandez-Alberti S, Golder MR, Jasti R, Doorn SK, Tretiak S. Nano Lett. 2014; 14: 6539
    • 2d Reddy VS, Camacho C, Xia J, Jasti R, Irle S. J. Chem. Theory Comput. 2014; 10: 4025
    • 2e Review: Golder MR, Jasti R. Acc. Chem. Res. 2015; 48: 557
    • 3a Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S. Angew. Chem. Int. Ed. 2011; 50: 8342
    • 3b Xia J, Bacon JW, Jasti R. Chem. Sci. 2012; 3: 3018
    • 3c Pena Alvarez M, Mayorga Burrezo P, Kertesz M, Iwamoto T, Yamago S, Xia J, Jasti R, López Navarrete JT, Taravillo M, Baonza VG, Casado J. Angew. Chem. Int. Ed. 2014; 53: 7033
    • 3d Iwamoto T, Slanina Z, Mizorogi N, Guo J, Akasaka T, Nagase S, Takaya H, Yasuda N, Kato T, Yamago S. Chem. Eur. J. 2014; 20: 14403
    • 3e Ueno H, Nishihara T, Segawa Y, Itami K. Angew. Chem. Int. Ed. 2015; 54: 3707
    • 3f Hashimoto S, Iwamoto T, Kurachi D, Kayahara E, Yamago S. ChemPlusChem 2017; 82: 1015
    • 3g Xu Y, Gsänger S, Minameyer MB, Imaz I, Maspoch D, Shyshov O, Schwer F, Ribas X, Drewello T, Meyer B, von Delius M. J. Am. Chem. Soc. 2019; 141: 18500
    • 3h Minameyer MB, Xu Y, Frühwald S, Görling A, von Delius M, Drewello T. Chem. Eur. J. 2020; 26: 8729
    • 3i Ubasart E, Borodin O, Fuertes-Espinosa C, Xu Y, García-Simón C, Gómez L, Juanhuix J, Gándara F, Imaz I, Maspoch D, von Delius M, Ribas X. Nat. Chem. 2021; 13: 420
    • 3j Review: Xu Y, von Delius M. Angew. Chem. Int. Ed. 2020; 59: 559
    • 4a Leonhardt EJ, Van Raden JM, Miller D, Zakharov LN, Alemán B, Jasti R. Nano Lett. 2018; 18: 7991
    • 4b White BM, Zhao Y, Kawashima TE, Branchaud BP, Pluth MD, Jasti R. ACS Cent. Sci. 2018; 4: 1173
    • 4c Van Raden JM, White BM, Zakharov LN, Jasti R. Angew. Chem. Int. Ed. 2019; 58: 7341
    • 4d Lovell TC, Garrison ZR, Jasti R. Angew. Chem. Int. Ed. 2020; 59: 14363
    • 4e Van Raden JM, Jarenwattananon NN, Zakharov LN, Jasti R. Chem. Eur. J. 2020; 26: 10205
    • 4f Schaub TA, Prantl EA, Kohn J, Bursch M, Marshall CR, Leonhardt EJ, Lovell TC, Zakharov LN, Brozek CK, Waldvogel SR, Grimme S, Jasti R. J. Am. Chem. Soc. 2020; 142: 8763
    • 4g Van Raden JM, Leonhardt EJ, Zakharov LN, Pérez-Guardiola A, Pérez-Jiménez AJ, Marshall CR, Brozek CK, Sancho-García JC, Jasti R. J. Org. Chem. 2020; 85: 129
    • 4h Maust RL, Li P, Shao B, Zeitler SM, Sun PB, Reid HW, Jasti R. ACS Cent. Sci. 2021; 7: 1056
    • 4i Otteson CE, Levinn CM, Van Raden JM, Pluth MD, Jasti R. Org. Lett. 2021; 23: 4608
    • 4j Review: Leonhardt EJ, Jasti R. Nat. Rev. Chem. 2019; 3: 672
  • 5 Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
  • 6 Sisto TJ, Golder MR, Hirst ES, Jasti R. J. Am. Chem. Soc. 2011; 133: 15800
  • 7 Wipf P, Jung JK. Chem. Rev. 1999; 99: 1469
  • 8 Golder MR, Zakharov LN, Jasti R. Pure Appl. Chem. 2017; 89: 1603
  • 9 Kayahara E, Patel VK, Yamago S. J. Am. Chem. Soc. 2014; 136: 2284
  • 10 Patel VK, Kayahara E, Yamago S. Chem. Eur. J. 2015; 21: 5742
    • 11a Sisto TJ, Jasti R. Synlett 2012; 483
    • 11b Volkmann J, Kohrs D, Bernt F, Wegner HA. Eur. J. Org. Chem. 2022; e202101357
  • 13 Davies JS, Higginbotham CL, Tremeer EJ, Brown C, Treadgold RC. J. Chem. Soc., Perkin Trans. 1 1992; 3043
    • 14a Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis, 4th ed. John Wiley & Sons; Hoboken: 2006: 166
    • 14b Kunz H, Waldmann H. In Comprehensive Organic Synthesis, Vol. 6. Trost BM, Fleming I. Pergamon; Oxford: 1991: 631
  • 15 Corey EJ, Cho H, Rücker C, Hua DH. Tetrahedron Lett. 1981; 22: 3455
    • 16a Darzi ER, Sisto TJ, Jasti R. J. Org. Chem. 2012; 77: 6624
    • 16b Xia J, Jasti R. Angew. Chem. Int. Ed. 2012; 51: 2474
    • 16c Evans PJ, Darzi ER, Jasti R. Nat. Chem. 2014; 6: 404
    • 16d Li P, Sisto TJ, Darzi ER, Jasti R. Org. Lett. 2014; 16: 182
    • 16e Darzi ER, Hirst ES, Weber CD, Zakharov LN, Lonergan MC, Jasti R. ACS Cent. Sci. 2015; 1: 335
    • 16f Hines DA, Darzi ER, Hirst ES, Jasti R, Kamat PV. J. Phys. Chem. A 2015; 119: 8083
    • 16g Van Raden JM, Darzi ER, Zakharov LN, Jasti R. Org. Biomol. Chem. 2016; 14: 5721
    • 16h Kayahara E, Sun L, Onishi H, Suzuki K, Fukushima T, Sawada A, Kaji H, Yamago S. J. Am. Chem. Soc. 2017; 139: 18480
    • 16i Schaub TA, Margraf JT, Zakharov L, Reuter K, Jasti R. Angew. Chem. Int. Ed. 2018; 57: 16348
    • 16j Hashimoto S, Kayahara E, Mizuhata Y, Tokitoh N, Takeuchi K, Ozawa F, Yamago S. Org. Lett. 2018; 20: 5973
    • 16k Lovell TC, Colwell CE, Zakharov LN, Jasti R. Chem. Sci. 2019; 10: 3786

    • For reviews, see:
    • 16l Jasti R, Bertozzi CR. Chem. Phys. Lett. 2010; 494: 1
    • 16m Hirst ES, Jasti R. J. Org. Chem. 2012; 77: 10473
    • 16n Segawa Y, Yagi A, Matsui K, Itami K. Angew. Chem. Int. Ed. 2016; 55: 5136
  • 17 Corey EJ, Venkateswarlu A. J. Am. Chem. Soc. 1972; 94: 6190
    • 18a Abe Y. Bull. Chem. Soc. Jpn. 1943; 18: 93
    • 18b Goodwin S, Witkop B. J. Am. Chem. Soc. 1957; 79: 179
    • 18c Miller B. Acc. Chem. Res. 1975; 8: 245
    • 18d Planas A, Tomás J, Bonet JJ. Tetrahedron Lett. 1987; 28: 471
    • 18e Kim I, Kim K, Choi J. J. Org. Chem. 2009; 74: 8492
  • 19 Haynes WM. In Handbook of Chemistry and Physics, 97th ed. Haynes WM, Bruno TJ, Lide DR. CRC Press; Boca Raton: 2016
  • 20 Trummal A, Lipping L, Kaljurand I, Koppel IA, Leito I. J. Phys. Chem. A. 2016; 120: 3663
  • 21 Kręcijasz, R. B. , Šolomek, T.; unpublished work.
  • 22 Darzi ER, White BM, Loventhal LK, Zakharov LN, Jasti R. J. Am. Chem. Soc. 2017; 139: 3106
  • 23 Abdulkarim A, Hinkel F, Jänsch D, Freudenberg J, Golling FE, Müllen K. J. Am. Chem. Soc. 2016; 138: 16208