Synlett 2023; 34(12): 1327-1342
DOI: 10.1055/a-2012-5317
account
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Recent Advances on the Carboxylations of C(sp3)–H Bonds Using CO2 as the Carbon Source

Suman Pradhan
,
Shoubhik Das
S.D. acknowledges financial assistance from the Odysseusprogramme and Fonds Wetenschappelijk Onderzoek (FWO) (Research Foundation – Flanders).


Dedicated to Prof. Masahiro Murakami for his unparalleled contributions on the topic of CO2 utilization in organic synthesis.

Abstract

Carbon dioxide (CO2) is widely known as being a sustainable C1 synthon for the synthesis of various carboxylic acid derivatives, including essential natural and unnatural amino acids. While it is sustainable, the high thermodynamic stability and kinetic inertness of the CO2 molecule is a major drawback to its wider use in organic synthesis. However, the reduction of this inert and highly stable CO2 molecule has been carried out successfully over the past few years using various stoichiometric as well as catalytic approaches. Initially, chemists employed transition-metal/transition-metal-free thermochemical methods for the incorporation of CO2 into organic compounds, however, gradually, the introduction of greener approaches such as visible-light-induced photoredox catalysis and electrocatalysis became revolutionary for the synthesis of carboxylic acids under mild reaction conditions. In this short review, we discuss the recent advances in carboxylation reactions via functionalization of the (sp3)C–H bonds of various organic molecules with CO2 using thermochemical, photochemical and electrochemical methods.

1 Introduction

2 Transition-Metal/Transition-Metal-Free Thermochemical Carbox ylations of C(sp3)–H Bonds

2.1 C(sp3)–H Bond Carboxylation of Carbonyls

2.2 Allylic, Benzylic and Alkyl C(sp3)–H Bond Carboxylation

3 Photochemical C(sp3)–H Bond Carboxylation

3.1 Allylic C(sp3)–H Bond Carboxylation

3.2 Benzylic C(sp3)–H Bond Carboxylation

4 Electrochemical Carboxylation of C(sp3)–H Bonds

5 Conclusion and Outlook



Publikationsverlauf

Eingereicht: 15. Dezember 2022

Angenommen nach Revision: 13. Januar 2023

Accepted Manuscript online:
13. Januar 2023

Artikel online veröffentlicht:
16. Februar 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Maag H. Prodrugs of Carboxylic Acids . In Prodrugs: Challenges and Rewards, Vol. V. Stella VJ, Borchardt RT, Hageman MJ, Oliyai R, Maag H, Tilley JW. Biotechnology; Pharmaceutical Aspects; Springer: New York: 2007: 703
    • 2a Modern Carbonylation Methods . Kollar L. Wiley-VCH; Weinheim: 2008
    • 2b Limburg B, Maquilón C, Kleij AW. Photochemical and Substrate-Driven CO2 Conversion. In CO2 as a Building Block in Organic Synthesis. Das S. Wiley-VCH; Weinheim: 2020
    • 3a Sakakura T, Choi J.-C, Yasuda H. Chem. Rev. 2007; 107: 2365
    • 3b Huang K, Sun C.-L, Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
    • 3c He M, Sun Y, Han B. Angew. Chem. Int. Ed. 2013; 52: 9620
    • 3d Martín C, Fiorani G, Kleij AW. ACS Catal. 2015; 5: 1353
    • 3e Sekine K, Yamada T. Chem. Soc. Rev. 2016; 45: 4524
    • 3f Bobbink FD, Gruszka W, Hulla M, Das S, Dyson PJ. Chem. Commun. 2016; 52: 10787
    • 3g Hirapara P, Riemer D, Hazra N, Gajera J, Finger M, Das S. Green Chem. 2017; 19: 5356
    • 3h Luo J, Larrosa I. ChemSusChem 2017; 10: 3317
    • 3i Song Q.-W, Zhou Z.-H, He L.-N. Green Chem. 2017; 19: 3707
    • 3j Riemer D, Mandaviya B, Schilling W, Götz AC, Kühl T, Finger M, Das S. ACS Catal. 2018; 8: 3030
    • 3k Schilling W, Das S. Tetrahedron Lett. 2018; 59: 3821
    • 3l Riemer D, Schilling W, Götz AG, Zhang Y, Gehrke S, Tkach I, Hollóczki O, Das S. ACS Catal. 2018; 8: 11679
    • 3m Burkart MD, Hazari N, Tway CL, Zeitler EL. ACS Catal. 2019; 9: 7937
    • 3n Wang S, Xi C. Chem. Soc. Rev. 2019; 48: 382
    • 3o Yang Y, Lee J.-W. Chem. Sci. 2019; 10: 3905
    • 3p Zhang L, Li Z, Takimoto M, Hou Z. Chem. Rec. 2020; 20: 494
    • 3q Song L, Jiang Y.-X, Zhang Z, Gui Y.-Y, Zhou X.-Y, Yu D.-G. Chem. Commun. 2020; 56: 8355
    • 3r Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
    • 3s Fujihara T, Tsuji Y. Front. Chem. 2019; 7: 430
    • 5a Julia-Hernandez F, Gaydou M, Serrano E, van Gemmeren M, Martin R. Top Curr. Chem. 2016; 374: 45
    • 5b Borjesson M, Moragas T, Gallego D, Martin R. ACS Catal. 2016; 6: 6739
    • 5c Mei T.-S, Chen Y.-G, Xu X.-T, Zhang K, Li Y.-Q, Zhang L.-P, Fang P. Synthesis 2018; 50: 35
    • 5d Yan S.-S, Fu Q, Liao L.-L, Sun G.-Q, Ye J.-H, Gong L, Bo-Xue Y.-Z, Yu D.-G. Coord. Chem. Rev. 2018; 374: 439
    • 5e Zhang Y, Zhang T, Das S. Green Chem. 2020; 22: 1800
    • 5f Schilling W, Das S. ChemSusChem 2020; 13: 6246
    • 5g Cauwenbergh R, Das S. Green Chem. 2021; 23: 2553
    • 5h Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Chem. Soc. Rev. 2022; 51: 9371
    • 6a Schneider J, Jia H, Muckerman JT, Fujita E. Chem. Soc. Rev. 2012; 41: 2036
    • 6b Li YN, Ma R, He L.-N, Diao Z.-F. Catal. Sci. Technol. 2014; 4: 1498

      Selected reviews on transition-metal-catalyzed CO2 incorporation:
    • 7a Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE. Angew. Chem. Int. Ed. 2011; 50: 8510
    • 7b Tsuji Y, Fujihara T. Chem. Commun. 2012; 48: 9956
    • 7c Zhang L, Hou Z. Chem. Sci. 2013; 4: 3395
    • 7d Song J, Liu Q, Liu H, Jiang X. Eur. J. Org. Chem. 2018; 696
    • 7e Sang R, Hu Y, Razzaq R, Mollaert G, Atia H, Bentrup U, Sharif M, Neumann H, Junge H, Jackstell R, Maes BU. W, Beller M. Nat. Commun. 2022; 13: 4432
    • 7f Wei D, Sang R, Sponholz P, Junge H, Beller M. Nat. Energy 2022; 7: 438
    • 7g Marx M, Frauendorf H, Spannenberg A, Neumann H, Beller M. JACS Au 2022; 2: 731
    • 7h Qiao C, Shi W, Brandolese A, Benet-Buchholz J, Escudero-Adán E, Kleij AW. Angew. Chem. Int. Ed. 2022; 61: e2022050

      For selected reviews and reports on photoredox catalysis, see:
    • 8a Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 8b Hoffmann N. J. Photochem. Photobiol., C 2008; 9: 43
    • 8c Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 8d Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 8e Ischay MA, Yoon TP. Eur. J. Org. Chem. 2012; 3359
    • 8f Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 8g Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 8h Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 8i Reckenthaler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
    • 8j Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075 ; and references cited therein
    • 8k Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 8l Kollmann J, Yu Z, Schilling W, Tong Z, Riemer D, Das S. Green Chem. 2019; 21: 1916
    • 8m Zhang Y, Schilling W, Riemer D, Das S. Nat. Protoc. 2020; 15: 822
    • 8n Cauwenbergh R, Das S. Synlett 2021; 32: 129
    • 8o Vanderghinste J, Das S. Synthesis 2022; 54: 3383
    • 8p Zhang Y, Sahoo PK, Ren P, Qin Y, Cauwenbergh R, Nimmegeers P, SivaRaman G, Passel SV, Guidetti A, Das S. Chem. Commun. 2022; 58: 11454
    • 9a Ritter SK. Chem. Eng. News 2017; 95: 23
    • 9b Ritter S. Chem. Eng. News 2017; 95: 21
    • 9c Perry SC, Pangotra D, Vieira L, Csepei L.-I, Sieber V, Wang L, Ponce de León C, Walsh FC. Nat. Chem. Rev. 2019; 3: 442
    • 9d Kim C.-C, Kim Y, Jeong S.-H, Oh KH, Nam KT, Sun J.-Y. ACS Nano 2020; 14: 11743
    • 9e Davey SG. Nat. Chem. Rev. 2021; 5: 837
    • 9f Leech MC, Lam K. Nat. Chem. Rev. 2022; 6: 275
    • 9g Li J, Zhang Y, Kuruvinashetti K, Kornienko N. Nat. Chem. Rev. 2022; 6: 303
    • 9h For a comparison between photo and electrocatalysis, see: Tay NE. S, Lehnherr D, Rovis T. Chem. Rev. 2022; 122: 2487
    • 10a Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 10b Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 10c Davies HM. L, Morton D. J. Org. Chem. 2016; 81: 343
    • 10d Wan JP, Gan L, Liu Y. Org. Biomol. Chem. 2017; 15: 9031
    • 11a Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 11b McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 11c Brueckl T, Baxter RD, Ishihara Y, Baran PS. Acc. Chem. Res. 2012; 45: 826
    • 13a Riduan SN, Zhang Y. Dalton Trans. 2010; 39: 3347
    • 13b Martín R, Kleij AW. ChemSusChem 2011; 4: 1259
    • 13c Gui Y.-Y, Zhou W.-J, Ye J.-H, Yu D.-G. ChemSusChem 2017; 10: 1337
    • 13d Li Y, Cui X, Dong K, Junge K, Beller M. ACS Catal. 2017; 7: 1077
    • 13e Tortajada A, Julia-Hernandez F, Borjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
  • 14 Hong J, Li M, Zhang J, Sun B, Mo F. ChemSusChem 2019; 12: 6

    • For selected reports on photocatalytic CO2 incorporation, see:
    • 15a Toki S, Hida S, Takamuku S, Sakurai H. Nippon Kagaku Kaishi 1984; 1: 152
    • 15b Berton M, Mello R, Núñez ME. G. ChemSusChem 2016; 9: 3397
    • 15c Seo H, Liu A, Jamison TF. J. Am. Chem. Soc. 2017; 139: 13969
    • 15d Meng Q.-Y, Wang S, König B. Angew. Chem. Int. Ed. 2017; 56: 13426
    • 15e Meng QY, Wang S, Huff GS, Konig B. J. Am. Chem. Soc. 2018; 140: 3198
    • 15f Berton M, Mello R, Acerete R, Núñez ME. G. J. Org. Chem. 2018; 83: 96
    • 15g Mello R, Arango-Daza JC, Varea T, Núñez ME. G. J. Org. Chem. 2018; 83: 13381

    • Selected reviews on visible-light-triggered photocatalytic CO2 incorporation:
    • 15h Hou J, Li J.-S, Wu J. Asian J. Org. Chem. 2018; 7: 1439
    • 15i Tan F, Yin G. Chin. J. Chem. 2018; 36: 545
    • 15j Yeung CS. Angew. Chem. Int. Ed. 2019; 58: 5492
    • 15k Zhang Z, Ye J.-H, Ju T, Liao L.-L, Huang H, Gui Y.-Y, Zhou W.-J, Yu D.-G. ACS Catal. 2020; 10: 10871
    • 15l Pradhan S, Roy S, Sahoo B, Chatterjee I. Chem. Eur. J. 2021; 27: 2254

      Selected reviews and reports on electrocatalytic CO2 incorporation:
    • 16a Finn C, Schnittger S, Yellowlees LJ, Love JB. Chem. Commun. 2012; 48: 1392
    • 16b Matthessen R, Fransaer J, Binnemans K. Beilstein J. Org. Chem. 2014; 10: 2484
    • 16c Fenner S, Ackermann L. Green Chem. 2016; 18: 3804
    • 16d Senboku H, Katayama A. Curr. Opin. Green Sustainable Chem. 2017; 3: 50
    • 16e Cao Y, He X, Wang N, Li H.-R, He L.-N. Chin. J. Chem. 2018; 36: 644
    • 16f Zhang S, Fan Q, Xia R, Meyer TJ. Acc. Chem. Res. 2020; 53: 255
    • 16g Ang NW. J, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 12842
    • 16h Alkayal A, Tabas V, Montanaro S, Wright IA, Malkov AV, Buckley BR. J. Am. Chem. Soc. 2020; 142: 1780
    • 16i Sheta AM, Mashaly MA, Said SB, Elmorsy SS, Malkov AV, Buckley BR. Chem. Sci. 2020; 11: 9109
    • 16j Sheta AM, Alkayal A, Mashaly MA, Said SB, Elmorsy SS, Malkov AV, Buckley BR. Angew. Chem. Int. Ed. 2021; 60: 21832
    • 16k You Y, Kanna W, Takano H, Hayashi H, Maeda S, Mita T. J. Am. Chem. Soc. 2022; 144: 3685
    • 16l Liao L.-L, Wang Z, Cao K, Sun G, Zhang W, Ran C, Li Y, Chen L, Cao G, Yu D. J. Am. Chem. Soc. 2022; 144: 2062
    • 16m Nandi S, Jana R. Asian J. Org. Chem. 2022; 11: e202200356
    • 17a Morgenstern DA, Wittrig RE, Fanwick PE, Kubiak CP. J. Am. Chem. Soc. 1993; 115: 6470
    • 17b Otero MD, Batanero B, Barba F. Tetrahedron Lett. 2006; 47: 2171
    • 17c Chmiel AF, Williams OP, Chernowsky CP, Yeung CS, Wickens ZK. J. Am. Chem. Soc. 2021; 143: 10882
    • 17d Alektiar SN, Wickens ZK. J. Am. Chem. Soc. 2021; 143: 13022
    • 17e Song L, Wang W, Yue J.-P, Jiang Y.-X, Wei M.-K, Zhang H.-P, Yan S.-S, Liao L.-L, Yu D.-G. Nat. Catal. 2022; 5: 832
  • 18 Qin W, Subhani M, Jiang C, Lu H. Org. Biomol. Chem. 2021; 19: 10030
    • 19a Re PD, Sandri E. Chem. Ber. 1960; 93: 1085
    • 19b Zhang W.-Z, Yang M.-W, Yang X.-T, Shi L.-L, Wang H.-B, Lu X.-B. Org. Chem. Front. 2016; 3: 217
  • 20 Kikuchi S, Sekine K, Ishida T, Yamada T. Angew. Chem. Int. Ed. 2012; 51: 6989
  • 21 Sekine K, Takayanagi A, Kikuchi S, Yamada T. Chem. Commun. 2013; 49: 11320
  • 22 Zhang W.-Z, Shi L.-L, Liu C, Yang X.-T, Wang Y.-B, Luo Y, Lu X.-B. Org. Chem. Front. 2014; 1: 275
  • 23 Sadamitsu Y, Komatsuki K, Saito K, Yamada T. Org. Lett. 2017; 19: 3191
  • 24 Bernier D, Brückner R. Synthesis 2007; 2249
  • 25 Zhou M, Yoshida Y, Ishii S, Noguchi H. Synth. Commun. 1999; 29: 2241
  • 26 Zhang W.-Z, Yang M.-W, Lu X.-B. Green Chem. 2016; 18: 4181
    • 27a Afarinkia K, Vinader V, Nelson TD, Posner GH. Tetrahedron 1992; 48: 9111
    • 27b Kim ES, Kim KH, Kim SH, Kim JN. Tetrahedron Lett. 2009; 50: 5098
    • 27c Frébault F, Luparia M, Oliveira MT, Goddard R, Maulide N. Angew. Chem. Int. Ed. 2010; 49: 5672
    • 27d Sun C.-L, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 13071
  • 28 Mita T, Michigami K, Sato Y. Org. Lett. 2012; 14: 3462
  • 29 Mita T, Michigami K, Sato Y. Chem. Asian J. 2013; 8: 2970
  • 30 Michigami K, Mita T, Sato Y. J. Am. Chem. Soc. 2017; 139: 6094
    • 31a Bartholomäus R, Bachmann J, Mang C, Haustedt LO, Harms K, Koert U. Eur. J. Org. Chem. 2013; 180
    • 31b Jiang X, Wang M, Song S, Xu Y, Miao Z, Zhang A. RSC Adv. 2015; 5: 27502
  • 32 Ueno A, Takimoto M, Hou Z. Org. Biomol. Chem. 2017; 15: 2370
  • 34 Juliá-Hernández F, Moragas T, Cornella J, Martin R. Nature 2014; 545: 84
    • 35a Wolff ME. Chem. Rev. 1963; 63: 55
    • 35b Breslow R, Heyer D. J. Am. Chem. Soc. 1982; 104: 2045
  • 36 Ishida N, Masuda Y, Uemoto S, Murakami M. Chem. Eur. J. 2016; 22: 6524
  • 37 Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
  • 38 Seo H, Katcher MH, Jamison TF. Nat. Chem. 2017; 9: 453
  • 39 Ishida N, Masuda Y, Imamura Y, Yamazaki K, Murakami M. J. Am. Chem. Soc. 2019; 141: 19611
  • 40 Meng Q.-Y, Schirmer TE, Berger AL, Donabauer K, König B. J. Am. Chem. Soc. 2019; 141: 11393
  • 41 Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
  • 42 Sahoo B, Bellotti P, Julia-Hernandez F, Meng QY, Crespi S, König B, Martin R. Chem. Eur. J. 2019; 25: 9001
  • 43 Song L, Fu D.-M, Chen L, Jiang Y.-X, Ye J.-H, Zhu L, Lan Y, Fu Q, Yu D.-G. Angew. Chem. Int. Ed. 2020; 59: 21121
  • 44 Senboku H, Yamauchi Y, Fukuhara T, Hara S. Electrochemistry 2006; 74: 612
  • 45 Muchez L, De Vos DE, Kim M. ACS Sustainable Chem. Eng. 2019; 7: 15860
  • 46 Ran C.-K, Chen X.-W, Gui Y.-Y, Liu J, Song L, Ren K, Yu D.-G. Sci. China Chem. 2020; 63: 1336