Z Gastroenterol 2023; 61(08): 1037-1045
DOI: 10.1055/a-2013-7633
Übersicht

Das Bauchgehirn: neuroanatomische Perspektiven für den Viszeralchirurgen

The abdominal brain: neuroanatomic perspectives for the abdominal surgeon
Erik Wolniczak*
1   Institut für Anatomie, Otto-von-Guericke-Universität zu Magdeburg, Magdeburg, Deutschland
,
Frank Meyer
2   Klinik für Allgemein-, Viszeral-, Gefäß- und Transplantationschirurgie, Universitätsklinikum Magdeburg A.ö.R., Magdeburg, Deutschland
,
Anne Albrecht
1   Institut für Anatomie, Otto-von-Guericke-Universität zu Magdeburg, Magdeburg, Deutschland
3   Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
4   Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
› Author Affiliations

Zusammenfassung

Unser „Bauchgehirn“ besteht nicht nur aus einem eigenständig tätigen enterischen Nervensystem, sondern auch aus bidirektionalen Verbindungen mit Parasympathikus und Sympathikus sowie zu Gehirn und Rückenmark. Neue Studien zeigen, dass diese Verbindungen schnell Informationen über die aufgenommene Nahrung an das Gehirn weiterleiten können, um so das Hungergefühl und komplexes Verhalten wie Belohnungslernen zu steuern. Aber auch unser emotionales Erleben, insbesondere Stress, hat einen starken Einfluss auf das gastrointestinale System. Das Immunsystem, die Motilität und die Barrierefunktion des Gastrointestinaltrakts werden außerdem stark vom intestinalen Mikrobiom moduliert. Lokale Bakterien können über freigesetzte Stoffwechselprodukte und Neuropeptide direkt die neuronale Kommunikation beeinflussen und Entzündungsfaktoren kontrollieren. Intensive Forschung in den letzten 10 Jahren konnte außerdem belegen, dass das intestinale Mikrobiom emotionale und kognitive Aspekte unseres Verhaltens beeinflusst und somit im Fokus zahlreicher neuropsychiatrischer Erkrankungen wie z. B. Depressionen und Angststörungen steht.

Dieser Übersichtsartikel soll einen kurzen Überblick über die anatomischen Grundlagen der sogenannten Darm-Gehirn-Achse geben und Modi der bidirektionalen Regulierung vorstellen. Über indirekte Verbindungen zum limbischen System kann die Darm-Gehirn-Achse wesentlich Stress und Angst, aber auch die Schmerzverarbeitung beeinflussen. Außerdem wird die Rolle des Mikrobioms erläutert und werden zukünftige Wege dargestellt, wie die (Mikrobiom-)Darm-Gehirn-Achse emotionales Erleben, Schmerzverarbeitung und Darmfunktion beeinflussen kann. Diese Zusammenhänge sind für die Weiterentwicklung der Viszeralmedizin und damit auch für den Viszeralchirurgen relevant, um interdisziplinär orientierte zukünftige Behandlungskonzepte zu entwickeln.

Abstract

The “abdominal brain“ does not only consist of a separate enteric nervous system but also of bidirectional connections to the autonomous nerve system with parasympathicus und sympathicus as well as brain and spinal cord. Novel studies have shown that these connections can quickly transfer information on the ingested nutrients to the brain to conduct the feeling of hunger and more complex behaviour, such as “reward-related learning“. However, even emotional experience, in particular, stress, has a strong impact onto the gastrointestinal system. The immune system, motility and barrier function of the gastrointestinal tract are modulated by the intestinal microbiota. Local bacteria may directly influence neuronal communication by released metabolic products and neuropeptides as well as may control inflammatory factors. Intensive research over the last 10 years was able to provide evidence that intestinal microbiota may affect emotional and cognitive aspects of our behaviour and, thus, it might be in the focus of numerous neuropsychiatric diseases, such as depressions and anxiety disorders.

The presented review is to provide a short summary of the i) anatomic basics of the so-called gut-brain axis and ii) modi of the bidirectional regulation. Through indirect connections to the limbic system, gut-brain axis can substantially influence stress and anxiety but also the pain processing. In addition, the role of microbiota is outlined and future paths are shown, e.g., how the (microbiota-)gut-brain axis may alter emotional experience, pain processing and intestinal function. Such associations are relevant for further development of visceral medicine, and, thus, also for the abdominal surgeon to derive future treatment concepts with interdisciplinary orientation.

* gegenwärtige Adresse siehe 2




Publication History

Received: 20 April 2022

Accepted after revision: 16 January 2023

Article published online:
04 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Kaelberer MM, Buchanan KL, Klein ME. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 2018; 361: eaat5236
  • 2 Kaelberer MM, Rupprecht LE, Liu WW. et al. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020; 43: 337-353
  • 3 Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021; 160 (05) 1486-1501
  • 4 Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 2012; 9 (05) 286-294
  • 5 Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17 (06) 338-351
  • 6 Costa M, Brookes SJ, Hennig GW. Anatomy and physiology of the enteric nervous system. Gut 2000; 47 (Suppl. 04) iv15-19
  • 7 Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020; 77 (22) 4505-4522
  • 8 Benarroch EE. Physiology and Pathophysiology of the Autonomic Nervous System. Continuum (Minneap Minn) 2020; 26 (01) 12-24
  • 9 Furness JB, Callaghan BP, Rivera LR. et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 2014; 817: 39-71
  • 10 Duan H, Cai X, Luan Y. et al. Regulation of the Autonomic Nervous System on Intestine. Front Physiol 2021; 12: 700129
  • 11 de Weerth C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev 2017; 83: 458-471
  • 12 Makris AP, Karianaki M, Tsamis KI. et al. The role of the gut-brain axis in depression: endocrine, neural, and immune pathways. Hormones (Athens) 2021; 20 (01) 1-12
  • 13 Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13 (10) 701-712
  • 14 Guo R, Chen LH, Xing C. et al. Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. Br J Anaesth 2019; 123 (05) 637-654
  • 15 Bohórquez DV, Shahid RA, Erdmann A. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 2015; 125 (02) 782-786
  • 16 Beutler LR, Chen Y, Ahn JS. et al. Dynamics of Gut-Brain Communication Underlying Hunger. Neuron 2017; 96 (02) 461-475.e5
  • 17 Han W, Tellez LA, Perkins MH. et al. A Neural Circuit for Gut-Induced Reward. Cell 2018; 175 (03) 665-678.e23
  • 18 Ruffoli R, Giorgi FS, Pizzanelli C. et al. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat 2011; 42 (04) 288-296
  • 19 Travagli RA, Anselmi L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol 2016; 13 (07) 389-401
  • 20 Herman JP. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol Neurobiol 2018; 38 (01) 25-35
  • 21 Castle M, Comoli E, Loewy AD. Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience 2005; 134 (02) 657-669
  • 22 Sindermann L, Redlich R, Opel N. et al. Systematic transdiagnostic review of magnetic-resonance imaging results: Depression, anxiety disorders and their co-occurrence. J Psychiatr Res 2021; 142: 226-239
  • 23 Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures?. Neuron 2010; 65 (01) 7-19
  • 24 Duque A, Arellano JI, Rakic P. An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases. Mol Psychiatry 2022; 27 (01) 377-382
  • 25 Parul G, Mishra A, Singh S. . et al. Chronic unpredictable stress negatively regulates hippocampal neurogenesis and promote anxious depression-like behavior via upregulating apoptosis and inflammatory signals in adult rats. Brain Res Bull 2021; 172: 164-179
  • 26 Du Preez A, Onorato D, Eiben I. et al. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 2021; 91: 24-47
  • 27 Matisz CE, Gruber AJ. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133: 104497
  • 28 Sudo N, Chida Y, Aiba Y. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558 (Suppl. 01) 263-275
  • 29 Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advs Exp. Medicine, Biology. Lyte M, Cryan JF. New York: Springer; 2014.
  • 30 Saxena S, Kruys V, Vamecq J. et al. The Role of Microglia in Perioperative Neuroinflammation and Neurocognitive Disorders. Front Aging Neurosci 2021; 13: 671499
  • 31 Peri R, Aguilar RC, Tüffers K. et al. The impact of technical and clinical factors on fecal microbiota transfer outcomes for the treatment of recurrent Clostridioides difficile infections in Germany. United European Gastroenterol J 2019; 7 (05) 716-722
  • 32 Liptak R, Gromova B, Gardlik R. Fecal Microbiota Transplantation as a Tool for Therapeutic Modulation of Non-gastrointestinal Disorders. Front Med (Lausanne) 2021; 8: 665520
  • 33 Brenner D, Shorten GD, O’Mahony SM. Postoperative pain and the gut microbiome. Neurobiol Pain 2021; 10: 100070
  • 34 Noonan S, Zaveri M, Macaninch E. et al. Food & mood: a review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutr Prev Health 2020; 3 (02) 351-362
  • 35 Fang J, Rong P, Hong Y. et al. Transcutaneous Vagus Nerve Stimulation Modulates Default Mode Network in Major Depressive Disorder. Biol Psychiatry 2016; 79 (04) 266-273
  • 36 Usichenko TI, Hua K, Cummings M. et al. Auricular stimulation for preoperative anxiety – A systematic review and meta-analysis of randomized controlled clinical trials. J Clin Anesth 2022; 76: 110581
  • 37 Mikami Y, Tsunoda J, Kiyohara H. et al. Vagus nerve-mediated intestinal immune regulation: therapeutic implications of inflammatory bowel diseases. Int Immunol 2022; 34 (02) 97-106
  • 38 Bonaz B, Sinniger V, Pellissier S. Vagus Nerve Stimulation at the Interface of Brain-Gut Interactions. Cold Spring Harb Perspect Med 2019; 9 (08) a034199