Nuklearmedizin 2023; 62(03): 200-213
DOI: 10.1055/a-2015-7785
Original Article

Feasibility of dose reduction for [18F]FDG-PET/MR imaging of patients with non-lesional epilepsy

Mögliche Dosisreduktion bei der [18F]FDG-PET/MR-Bildgebung bei Patienten mit nichtläsionaler Epilepsie
Hunor Kertész
1   QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
,
Tatjana Traub-Weidinger
2   Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
,
Jacobo Cal-Gonzalez
3   Ion Beam Applications, Protontherapy Center Quironsalud, Madrid, Spain
,
Ivo Rausch
1   QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
,
Otto Muzik
4   Department of Radiology, Wayne State University School of Medicine, The Detroit Medical Center, Children’s Hospital of Michigan, Detroit, United States
,
Lalith Kumar Shyiam Sundar
1   QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
,
Thomas Beyer
1   QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
› Institutsangaben
Austrian Science Fund (I3451-N32)

Abstract

The aim of the study was to evaluate the effect of reduced injected [18F]FDG activity levels on the quantitative and diagnostic accuracy of PET images of patients with non-lesional epilepsy (NLE).

Nine healthy volunteers and nine patients with NLE underwent 60-min dynamic list-mode (LM) scans on a fully-integrated PET/MRI system. Injected FDG activity levels were reduced virtually by randomly removing counts from the last 10-min of the LM data, so as to simulate the following activity levels: 50 %, 35 %, 20 %, and 10 % of the original activity. Four image reconstructions were evaluated: standard OSEM, OSEM with resolution recovery (PSF), the A-MAP, and the Asymmetrical Bowsher (AsymBowsher) algorithms. For the A-MAP algorithms, two weights were selected (low and high). Image contrast and noise levels were evaluated for all subjects while the lesion-to-background ratio (L/B) was only evaluated for patients. Patient images were scored by a Nuclear Medicine physician on a 5-point scale to assess clinical impression associated with the various reconstruction algorithms.

The image contrast and L/B ratio characterizing all four reconstruction algorithms were similar, except for reconstructions based on only 10 % of total counts. Based on clinical impression, images with diagnostic quality can be achieved with as low as 35 % of the standard injected activity. The selection of algorithms utilizing an anatomical prior did not provide a significant advantage for clinical readings, despite a small improvement in L/B (< 5 %) using the A-MAP and AsymBowsher reconstruction algorithms.

In patients with NLE who are undergoing [18F]FDG-PET/MR imaging, the injected [18F]FDG activity can be reduced to 35 % of the original dose levels without compromising.

Zusammenfassung

Das Ziel der Studie war es, die quantitativen Aussagen und die diagnostische Wertigkeit der PET Bilder für reduzierte applizierte Tracermengen von [18F]FDG im Fall von Patienten mit nicht läsionaler Epilepsie (NLE) zu bewerten. Dafür unterzogen sich neun gesunde Probanden und neun Patienten mit NLE einer 60-minütigen dynamischen (list-mode) Untersuchung in einem vollständig integrierten PET/MRT-System. Die injizierten FDG-Aktivitätsniveaus wurden virtuell durch zufälliges Entfernen von Messereignissen aus den letzten 10 Minuten von den LM-Daten reduziert, um 50 %, 35 %, 20 % und 10 % der ursprünglichen Aktivität zu simulieren. Vier Bildrekonstruktionen wurden ausgewertet: Standard-OSEM, OSEM mit Auflösungswiederherstellung (point spread function, PSF), die A-MAP und die asymmetrische Bowsher (AsymBowsher)-Algorithmen. Für die A-MAP-Algorithmen wurden zwei Gewichtungen (niedrig und hoch) ausgewählt. Bildkontrast und Bildrauschen wurden für alle Untersuchungen (Probanden und Patienten) bewertet, während das Läsions-zu-Hintergrund-Verhältnis (L/B) nur für Patienten bewertet wurde. Die Patientenbilder aus den 4 Rekonstruktionen wurden von einem Arzt der Nuklearmedizin unter Verwendeung einer 5-Punkte-Skala hinsichtlich der klinischen Wertigkeit beurteilt. Der Bildkontrast und das L/B-Verhältnis war für alle vier Rekonstruktionen ähnlich, mit Ausnahme von Rekonstruktionen basierend auf nur 10% applizierten Aktivität. Basierend auf dem klinischen Eindruck, können Bilder mit diagnostischer Qualität mit 35% der standardmäßig injizierten Aktivität, oder mehr erreicht werden. Die Auswahl von Algorithmen, die einen anatomischen Prior verwenden, lieferten keinen signifikanten Vorteil für die klinische Auswertung, trotz einer kleinen Verbesserung in L/B (< 5%) mit A-MAP und AsymBowsher. Bei Patienten mit NLE, die sich einer [18F]FDG-PET/MR Bildgebung unterziehen, kann die injizierte [18F]FDG-Aktivität auf 35% der ursprünglichen Dosierung ohne Einschränkung der klinischen Bildqualität reduziert werden.



Publikationsverlauf

Eingereicht: 24. August 2022

Angenommen: 16. Januar 2023

Artikel online veröffentlicht:
20. Februar 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rausch I, Quick HH, Cal-Gonzalez J. et al. Technical and instrumentational foundations of PET/MRI. Eur J Radiol 2017; 94: A3-A13
  • 2 Costa DC, Pilowsky LS, Ell PJ. Nuclear medicine in neurology and psychiatry. Lancet 1999; 354: 1107-1111
  • 3 Politis M, Piccini P. Positron emission tomography imaging in neurological disorders. J Neurol 2012; 259: 1769-1780
  • 4 Henry TR, Sutherling WW, Engel JJr. et al. Interictal cerebral metabolism in partial epilepsies of neocortical origin. Epilepsy Res 1991; 10: 174-182
  • 5 Ding Y-S, Chen B-B, Glielmi C. et al. A pilot study in epilepsy patients using simultaneous PET/MR. Am J Nucl Med Mol Imaging 2014; 4: 459-470
  • 6 Traub-Weidinger T, Muzik O, Sundar LKS. et al. Utility of Absolute Quantification in Non-lesional Extratemporal Lobe Epilepsy Using FDG PET/MR Imaging. Front Neurol 2020; 11: 54
  • 7 Tóth M, Barsi P, Tóth Z. et al. The role of hybrid FDG-PET/MRI on decision-making in presurgical evaluation of drug-resistant epilepsy. BMC Neurol 2021; 21: 363
  • 8 Council Directive 201359Euratom of 5 December 20.pdf..
  • 9 Gelfand MJ, Parisi MT, Treves ST. et al. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 2011; 52: 318-322
  • 10 Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 2000; 97: 11050-11055
  • 11 Delso G, Fürst S, Jakoby B. et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 2011; 52: 1914-1922
  • 12 Cal-Gonzalez J, Rausch I, Shiyam Sundar LK. et al. Hybrid Imaging: Instrumentation and Data Processing. Frontiers in Physics 2018; 6: 47
  • 13 Hudson HM, Larkin RS. Accelerated Image Reconstruction using Ordered Subsets of Projection Data. IEEE Transaction on Medical Imaging 1994;
  • 14 Panin VY, Kehren F, Michel C. et al. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006; 25: 907-921
  • 15 Erlandsson K, Dickson J, Arridge S. et al. MR Imaging-Guided Partial Volume Correction of PET Data in PET/MR Imaging. PET Clin 2016; 11: 161-177
  • 16 Vunckx K, Atre A, Baete K. et al. Evaluation of three MRI-based anatomical priors for quantitative PET brain imaging. IEEE Trans Med Imaging 2012; 31: 599-612
  • 17 Vunckx K, Dupont P, Goffin K. et al. Voxel-based comparison of state-of-the-art reconstruction algorithms for 18F-FDG PET brain imaging using simulated and clinical data. Neuroimage 2014; 102 Pt 2: 875-884
  • 18 Wang G, Qi J. Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization. IEEE Trans Med Imaging 2012; 31: 2194-2204
  • 19 Hebert T, Leahy R. A Generalized EM Algorithm for 3-D Bayesian Reconstruction from Poisson Data Using Gibbs Priors. IEEE Trans Med Imaging 1989;
  • 20 Bai B, Li Q, Leahy RM. Magnetic resonance-guided positron emission tomography image reconstruction. Semin Nucl Med 2013; 43: 30-44
  • 21 Nuyts J, Beque D, Dupont P. et al. A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography. IEEE Transactions on Nuclear Science 2002;
  • 22 Baete K, Nuyts J, Van Paesschen W. et al. Anatomical-based FDG-PET reconstruction for the detection of hypo-metabolic regions in epilepsy. IEEE Trans Med Imaging 2004;
  • 23 Bowsher JE, Yuan H, Hedlund LW. et al. Utilizing MRI Information to Estimate F18-FDG Distributions in Rat Flank Tumors. IEEE Nucl Sci Symp Conf Rec 2004;
  • 24 Vunckx K, Nuyts J. Heuristic modification of an anatomical Markov prior improves its performance. IEEE Nuclear Science Symposuim & Medical Imaging Conference 2010;
  • 25 Wampl S, Rausch I, Traub-Weidinger T. et al. Quantification accuracy of neuro-oncology PET data as a function of emission scan duration in PET/MR compared to PET/CT. Eur J Radiol 2017; 95: 257-264
  • 26 Kertész H, Beyer T, London K. et al. Reducing Radiation Exposure to Paediatric Patients Undergoing [18F]FDG-PET/CT Imaging. Mol Imaging Biol 2021;
  • 27 Chen W, Liu L, Li Y. et al. Evaluation of pediatric malignancies using total-body PET/CT with half-dose [18F]-FDG. Eur J Nucl Med Mol Imaging 2022;
  • 28 Dickson J, Eberlein U, Lassmann M. The effect of modern PET technology and techniques on the EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 2022; 49: 1964-1969
  • 29 Fällmar D, Lilja J, Kilander L. et al. Validation of true low-dose 18F-FDG PET of the brain. Am J Nucl Med Mol Imaging 2016; 6: 269-276
  • 30 Fällmar D, Lilja J, Danfors T. et al. Z-score maps from low-dose 18F-FDG PET of the brain in neurodegenerative dementia. Am J Nucl Med Mol Imaging 2018; 8: 239-246
  • 31 Schiller F, Frings L, Thurow J. et al. Limits for Reduction of Acquisition Time and Administered Activity in 18F-FDG PET Studies of Alzheimer Dementia and Frontotemporal Dementia. J Nucl Med 2019; 60: 1764-1770
  • 32 Soret M, Piekarski E, Yeni N. et al. Dose Reduction in Brain [18F]FDG PET/MRI: Give It Half a Chance. Mol Imaging Biol 2020; 22: 695-702
  • 33 Soret M, Maisonobe J-A, Desarnaud S. et al. Ultra-low-dose in brain 18F-FDG PET/MRI in clinical settings. Sci Rep 2022; 12: 15341
  • 34 Sundar LK, Muzik O, Rischka L. et al. Towards quantitative [18F]FDG-PET/MRI of the brain: Automated MR-driven calculation of an image-derived input function for the non-invasive determination of cerebral glucose metabolic rates. J Cereb Blood Flow Metab 2019; 39: 1516-1530
  • 35 Sundar LKS, Muzik O, Rischka L. et al. The promise of fully-integrated PET/MR imaging: Non-invasive clinical quantification of cerebral glucose metabolism. The Journal of Nuclear Medicine 2019;
  • 36 Guedj E, Varrone A, Boellaard R. et al. EANM procedure guidelines for brain PET imaging using [18F]FDG, version 3. Eur J Nucl Med Mol Imaging 2021;
  • 37 James F. A review of pseudorandom number generators. Computer Physics Communications 1990; 60: 329-344
  • 38 Ashburner J. SPM: a history. Neuroimage 2012; 62: 791-800
  • 39 Martinez-Möller A, Souvatzoglou M, Delso G. et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009; 50: 520-526
  • 40 Martí-Climent JM, Prieto E, Morán V. et al. Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI Res 2017; 7: 37