Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(01): 134-142
DOI: 10.1055/a-2022-1905
DOI: 10.1055/a-2022-1905
special topic
Advances in Skeletal Editing and Rearrangement Reactions
Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides Bearing a Tethered Nucleophile with the Translocation of an Amide Group
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI; grant number JP21H04682) from MEXT, Japan. R.S. thanks the Japan Science and Technology Agency (JST SPRING; grant number JPMJSP2138) for support.

Abstract
The palladium-catalyzed reaction of N-allylamides bearing a tethered nucleophile results in the extrusion of an amide moiety in the form of an isocyanate, with its subsequent capture by the pendant nucleophile. This reaction involves the net catalytic transposition of an amide group.
Key words
palladium catalyst - C–N bond activation - amides - isocyanates - elimination - rearrangementSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2022-1905.
- Supporting Information
Publication History
Received: 19 November 2022
Accepted after revision: 30 January 2023
Accepted Manuscript online:
30 January 2023
Article published online:
06 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 1b Börgel J, Ritter T. Chem 2020; 6: 1877
- 1c Lasso JD, Castillo-Pazos DJ, Li C.-J. Chem. Soc. Rev. 2021; 50: 10955
- 1d Jurczyk J, Woo J, Kim SF, Dherange BD, Sarpong R, Levin MD. Nat. Synth. 2022; 1: 352
- 2a Murakami M, Ishida N. J. Am. Chem. Soc. 2016; 138: 13759
- 2b Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
- 2c Song F, Gou T, Wang B.-Q, Shi Z.-J. Chem. Soc. Rev. 2018; 47: 7078
- 2d Tobisu M, Kodama T, Fujimoto H. In Comprehensive Organometallic Chemistry IV, Vol. 12. Tonks IA. Elsevier; Amsterdam: 2022: 347-420
- 3a Xue Y, Dong G. Acc. Chem. Res. 2022; 55: 2341
- 3b Murakami M, Ishida N. Chem. Rev. 2021; 121: 264
- 4a Denton EH, Lee YH, Roediger S, Boehm P, Fellert M, Morandi B. Angew. Chem. Int. Ed. 2021; 60: 23435
- 4b Liao L.-L, Cao G.-M, Jiang Y.-X, Jin X.-H, Hu X.-L, Chruma JJ, Sun G.-Q, Gui Y.-Y, Yu D.-G. J. Am. Chem. Soc. 2021; 143: 2812
- 4c Ito Y, Nakatani S, Shiraki R, Kodama T, Tobisu M. J. Am. Chem. Soc. 2022; 144: 662
- 5a Hyland EE, Kelly PQ, McKillop AM, Dherange BD, Levin MD. J. Am. Chem. Soc. 2022; 144: 19258
- 5b Liu S, Cheng X. Nat. Commun. 2022; 13: 425
- 5c Reisenbauer JC, Green O, Franchino A, Finkelstein P, Morandi B. Science 2022; 377: 1104
- 5d Kelly PQ, Filatov AS, Levin MD. Angew. Chem. Int. Ed. 2022; 61: e202213041
- 5e Saito H, Yorimitsu H. Chem. Lett. 2019; 48: 1019 ; see also ref. 1d
- 6a Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2021; 121: 365
- 6b Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
- 6c Tunge JA. Isr. J. Chem. 2020; 60: 351
- 6d Nambo M, Maekawa Y, Crudden CM. ACS Catal. 2022; 12: 3013
- 6e Shimazumi R, Tanimoto R, Kodama T, Tobisu M. J. Am. Chem. Soc. 2022; 144: 11033
- 7a Woo J, Christian AH, Burgess SA, Jiang Y, Mansoor UF, Levin MD. Science 2022; 376: 527
- 7b Cao Z.-C, Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
- 7c Nwachukwu CI, McFadden TP, Roberts AG. J. Org. Chem. 2020; 85: 9979 ; see also ref. 1d
- 8a Kurahashi T, Matsubara S. Acc. Chem. Res. 2015; 48: 170
- 8b Vasu D, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 7162
- 8c Luu QH, Li J. Chem. Sci. 2022; 13: 1095
- 8d Patel SC, Burns NZ. J. Am. Chem. Soc. 2022; 144: 17797
- 8e Gary S, Bloom S. ACS Cent. Sci. 2022; 8: 1537
- 8f Bartholomew GL, Carpaneto F, Sarpong R. J. Am. Chem. Soc. 2022; 144: 22309 ; see also refs. 4a–c for substitution via decarbonylation and decarboxylation. Other related examples can also be found in ref. 1d
- 9 The allylic substitution of allyl carbamates bearing a tethered nucleophile was reported to give products with CO2 incorporation. However, such reactions are not classified as cut-and-paste type editing, because part of the group in the substrate (i.e., a MeO group) is eliminated as a result of the transformation. See: Feng H. Chem. Heterocycl. Compd. (Engl. Transl.) 2020; 56: 506
- 10 The low reactivity of electron-rich isocyanates against nucleophiles is another potential reason. See: Rawling T, McDonagh AM, Tattam B, Murray M. Tetrahedron 2012; 68: 6065
- 11 Sangeeth CS. S, Demissie AT, Yuan L, Wang T, Frisbie CD, Nijhuis CA. J. Am. Chem. Soc. 2016; 138: 7305
For selected reviews on insertion reactions into carbon frameworks, see:
For selected recent work involving insertion of more than one atom into C–C bonds, see:
For selected recent work involving single atom insertion, see:
For decarbonylation, see:
For decarboxylation, see:
For desulfonylation, see:
For deisocyanation, see:
For selected recent work on single-atom deletion, see:
For reviews on substitution-type editing of molecular frameworks, see:
For selected recent work, see: