Synthesis 2023; 55(13): 2070-2082
DOI: 10.1055/a-2022-2206
paper
Special Issue dedicated to Prof. Alain Krief

Investigating the Mechanism of the Catalytic Intramolecular Aza-Wittig Reaction Involved in the Synthesis of 2-Methylbenzothiazole from the Perspective of Bonding Evolution Theory

a   Laboratory of Theoretical Chemistry (LCT) and Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
b   Physical and Theoretical Chemistry Laboratory, University of Yaoundé 1, Yaoundé, Cameroon
c   Computational Chemistry Laboratory, High Teacher Training College, University of Yaoundé 1, Yaoundé, Cameroon
,
a   Laboratory of Theoretical Chemistry (LCT) and Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
,
a   Laboratory of Theoretical Chemistry (LCT) and Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
› Author Affiliations
A.I.A. thanks the University of Namur (Belgium) for his UNamur-CERUNA Ph.D. Mobility Fellowship. V.L. thanks the FNRS-FRFC for his Research Associate position. The calculations were performed on the computers of the Consortium des Equipements de Calcul Intensif (CECI, http://www.ceci-hpc.be) and particularly those of the Technological Platform of High-Performance Computing, for which the authors gratefully acknowledge the financial support of the F.R.S.-FNRS (GEQ U.G006.15, RW/GEQ2016, U.G018.19, U.G011.22), of the Walloon Region (RW1610468, RW/GEQ2016, and RW2110213), and of the University of Namur.


This work is dedicated to Prof. Alain Krief at the occasion of his 80th birthday. Prof. Alain Krief has introduced two of us to Organic Chemistry and has trained them to many marvelous facets of Organic Synthesis.

Abstract

Bonding evolution theory has been used at the density functional theory level [ωB97X-D exchange-correlation functional, 6-311G(d,p) basis set, and solvent (toluene) effects with polarizable continuum model] to unravel the reaction mechanism of the intramolecular aza-Wittig reaction of 2-(acetylthio)phenyl isocyanate (1) catalyzed by 3-methyl-1-phenyl-2-phospholene 1-oxide (2) to form 2-methylbenzothiazole (3). The reaction involves four steps (transition states) corresponding to (1) the formation of a cycloadduct (O–C then P–N bonds), (2) a decarboxylation leading to the formation of an iminophosphorane, and (3) an intramolecular [2+2] cycloaddition (N–C then P–O bonds) followed by (4) a retro [2+2] cycloaddition (cleavage of the P–N then O–C bonds) to get the product and regenerate the catalyst. Step 1 is the rate-determining step with an activation Gibbs free enthalpy of 21 kcal mol–1 and it is favored with respect to a competitive pathway leading to the formation of another cycloadduct (P–C then O–N bonds). The whole reaction is exergonic with a Gibbs free energy decrease of 31 kcal mol–1, associated with the liberation of a CO2 molecule and the formation of the aromatic benzothiazole. Following the scale of Domingo, the successive steps of the reaction have a polar nature.

Supporting Information



Publication History

Received: 15 November 2022

Accepted after revision: 30 January 2023

Accepted Manuscript online:
30 January 2023

Article published online:
08 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Thomson JJ. Philos. Mag., J. Sci. 1897; 44: 293
  • 2 Rutherford E. Philos. Mag., J. Sci. 1911; 21: 669
  • 3 Lewis GN. J. Am. Chem. Soc. 1916; 38: 762
  • 4 Pauling L. J. Am. Chem. Soc. 1931; 53: 1367
  • 5 Pauling L. J. Am. Chem. Soc. 1932; 54: 988
  • 6 Hehre J, Radom L, Schleyer P. vR, Pople JA. Ab Initio Molecular Orbital Theory 1986
  • 7 Geerlings P, De Proft F, Langenaeker W. Chem. Rev. 2003; 103: 1793
  • 8 Rong C, Zhao D, He X, Liu S. J. Phys. Chem. Lett. 2022; 13: 11191
  • 9 Popelier PL. A, Brémond EA. G. Int. J. Quantum Chem. 2009; 109: 2542
  • 10 Bader RF. W. Acc. Chem. Res. 1985; 18: 9
  • 11 Bader RF. W. Atoms in Molecules - A Quantum Theory . Oxford University Press; Oxford UK: 1990
  • 12 Bader RF. W, Henneker WH. J. Am. Chem. Soc. 1965; 87: 3063
  • 13 Bader RF. W, Stephens ME. J. Am. Chem. Soc. 1975; 97: 7391
  • 14 Becke AD, Edgecombe KE. J. Chem. Phys. 1990; 92: 5397
  • 15 Thom R. Structural Stability and Morphogenesis, an Outline of a General Theory of Models. Benjamin/Cummings Publishing Co; Reading: 1980
  • 16 Silvi B, Savin A. Nature 1994; 371: 683
  • 17 Krokidis X, Noury S, Silvi B. J. Phys. Chem. A 1997; 101: 7277
  • 18 Polo V, Gonzalez-Navarrete P, Silvi B, Andrés J. Theor. Chem. Acc. 2008; 120: 341
  • 19 Safont VS, Gonzalez-Navarrete P, Oliva M, Andrés J. Phys. Chem. Chem. Phys. 2015; 17: 32358
  • 20 Viciano I, Gonzalez-Navarrete P, Andrés J, Martí S. J. Chem. Theory Comput. 2015; 11: 1470
  • 21 Zahedi E, Shaabani S, Shiroudi A. J. Phys. Chem. A 2017; 121: 8504
  • 22 Andrés J, González-Navarrete P, Safont VS, Silvi B. Phys. Chem. Chem. Phys. 2017; 19: 29031
  • 23 Gonzalez-Navarrete P, Andrés J, Safont VS. Phys. Chem. Chem. Phys. 2018; 20: 535
  • 24 Cherni E, Adjieufack AI, Champagne B, Abderrabba M, Ayadi S, Liégeois V. J. Phys. Chem. A 2020; 124: 4068
  • 25 Michalski M, Berski S. Mol. Phys. 2021; 119: e1961035
  • 26 Adjieufack AI, Bake MM, Nguimkeu CN, Pilmé J, Ndassa IM. ChemPhysChem 2021; 22: 1792
  • 27 Adjieufack AI, Liégeois V, Ndassa IM, Champagne B. RSC Adv. 2021; 11: 10083
  • 28 Guerra C, Ayarde-Henríquez L, Duque-Noreña M, Chamorro E. ChemPhysChem 2022; 23: e202200217
  • 29 Bake MM, Adjieufack AI, Pélagie MA. M, Zintchem AA. A, Bebga G, Rhyman L, Ndassa IM, Ramasami P. J. Comput. Chem. 2022; 43: 972
  • 30 Ayarde-Henríquez L, Guerra C, Duque-Noreña M, Rincón E, Pérez P, Chamorro E. ChemPhysChem 2022; e202200343
  • 31 Adjieufack AI, Andrés J, Oliva M, Safont VS. Physchem 2022; 2: 207
  • 32 Polo V, Andrés J, Castillo R, Berski S, Silvi B. Chem. Eur. J. 2004; 10: 5165
  • 33 Polo V, Andrés J, Berski S, Domingo LR, Silvi B. J. Phys. Chem. A 2008; 112: 7128
  • 34 Berski S, Andrés J, Silvi B, Domingo LR. J. Phys. Chem. A 2003; 107: 6014
  • 35 Andrés J, González-Navarrete P, Safont VS. Int. J. Quantum Chem. 2014; 114: 1239
  • 36 Soleymani M, Emamian S. J. Mol. Graphics Modell. 2022; 116: 108240
  • 37 Saloni K, Sanjiv K, Balasubramanian N, Siong M, Kalavathy R, Vasudevan M, Syed A. Chem. Cent. J. 2018; 12: 96
  • 38 Gjorgjieva M, Tomasic T, Kikelj D, Lucija PM. Curr. Med. Chem. 2018; 25: 1
  • 39 Pathak N, Rathi E, Kumar N, Kini SG, Rao CM. Mini-Rev. Med. Chem. 2020; 20: 12
  • 40 Keri RS, Patil MR, Patil SA, Budagupi S. Eur. J. Med. Chem. 2015; 89: 207
  • 41 Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Khan KM, Riaz M. Bioorg. Chem. 2016; 66: 80
  • 42 Fengxian L, Rui H, Shuangqing W, Xudong G, Guoqiang Y. RSC Adv. 2017; 7: 4196
  • 43 Das S, Indurthi HK, Asati P, Saha P, Sharma DK. Dyes Pigm. 2022; 199: 110074
  • 44 Bahadorikhalili S, Sardarian AR. Polycyclic Aromat. Compd. 2018; 40: 990
  • 45 Gorepatil PB, Mane YD, Ingle VS. Synlett 2013; 24: 2241
  • 46 Marsden SP. Catalytic Variants of Phosphine Oxide-Mediated Organic Transformations, In Sustainable Catalysis . Dunn PJ, Hii KK, Krische MJ, Williams MT. Wiley; Weinheim: 2013
  • 47 Marsden SP, McGonagle AE, McKeever-Abbas B. Org. Lett. 2008; 12: 2589
  • 48 Wittig G, Schöllkopf U. Chem. Ber. 1954; 87: 1318
  • 49 Wittig G, Haag W. Chem. Ber. 1955; 88: 1654
  • 50 Rocha DH. A, Pinto DC. G. A, Silva AM. S. Eur. J. Org. Chem. 2018; 2443
  • 51 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision D.01 2013
  • 52 Chai J.-D, Head-Gordon M. Phys. Chem. Chem. Phys. 2008; 10: 6615
  • 53 Fukui K. J. Phys. Chem. 1970; 74: 4161
  • 54 Gonzalez C, Schlegel HB. J. Phys. Chem. 1990; 94: 5523
  • 55 Gonzalez C, Schlegel HB. J. Chem. Phys. 1991; 95: 5853
  • 56 Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999
  • 57 Domingo LR. RSC Adv. 2014; 4: 32415
  • 58 Reed AE, Weinstock RB, Weinhold F. J. Chem. Phys. 1985; 83: 735
  • 59 Reed AE, Curtiss LA, Weinhold F. Chem. Rev. 1988; 88: 899
  • 60 Noury S, Krokidis X, Fuster F, Silvi B. Comput. Chem. 1999; 23: 597
  • 61 Liégeois V. DrawProfile . UNamur; Namur: 2024. www.unamur.be/drawprofile (accessed Feb 20, 2023)
  • 62 Liégeois V. DrawMol . UNamur; Namur: 2024. www.unamur.be/drawmol (accessed Feb 20, 2023)