Klinische Neurophysiologie 2023; 54(01): 8-13
DOI: 10.1055/a-2024-6346
Übersicht

Bedeutung der Muskelsonographie in der Detektion von Faszikulationen bei der ALS

Muscle Ultrasonography to Detect Fasciculations in Amyotrophic Lateral Sclerosis – State of the Art
Alexander German
1   Molekular-Neurologische Abteilung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
,
Matthias Türk
2   Neurologische Klinik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
3   Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Erlangen
,
Axel Schramm
4   Neuropraxis Fürth, Fürth
,
Martin Regensburger
1   Molekular-Neurologische Abteilung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
3   Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Erlangen
› Author Affiliations
Förderung Diese Arbeit wurde unterstützt von der Deutschen Forschungsgemeinschaft (DFG, SFB 1483, Projekt 442419336, EmpkinS).InteressenkonfliktDie Autorinnen/Autoren geben an, dass kein Interessenkonflikt besteht.

Zusammenfassung

Bei der amyotrophen Lateralsklerose sind Faszikulationen häufig bereits in frühen Stadien in mehreren Körperregionen vorzufinden und haben daher Eingang in die entsprechenden Leitlinien und Diagnosekriterien gefunden. Während die invasive EMG-Diagnostik unverzichtbar zum Nachweis von akut- und chronisch-neurogenen Veränderungen des elektrischen Signalverhaltens motorischer Einheiten und zur Bestätigung von Faszikulationspotenzialen bleibt, bietet die Muskelsonographie ein hochsensitives Verfahren, um schnell und nicht-invasiv Faszikulationen in den verschiedenen Muskel-Etagen zu erfassen. In dieser Übersichtsarbeit stellen wir die bisherigen Daten zum Einsatz der Muskelsonographie zur Faszikulationsdetektion dar. Durch ihren Einsatz ermöglicht die Muskelsonographie im klinischen Alltag eine zielgerichtete und hierdurch aussagekräftigere EMG-Diagnostik. Aktuelle Forschungsstudien zielen darauf ab, Faszikulationen sonomorphologisch genauer zu charakterisieren, zu quantifizieren und als Verlaufsparameter zu untersuchen.

Abstract

In amyotrophic lateral sclerosis, fasciculations are frequently present at early stages in multiple body regions which is why they were included in guidelines and diagnostic criteria. While invasive EMG recording remains indispensable for detecting acute and chronic neurogenic changes in motor unit action potentials and firing patterns as well as to confirm the presence of fasciculation potentials, muscle ultrasonography provides a highly sensitive method to rapidly and non-invasively detect fasciculations in the different body regions. In this review, we summarize current data on the use of muscle ultrasonography for the detection of fasciculations, and we describe how muscle ultrasonography allows targeted EMG diagnosis in clinical practice. Current research studies aim to analyze fasciculations more precisely regarding their quantity and morphology, as well as their potential as a progression parameter.



Publication History

Article published online:
14 March 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Denny-Brown D, Pennybacker JB. Fibrillation and fasciculation in voluntary muscle. Brain 1938; 61: 311-312
  • 2 Trojaborg W, Buchthal F. Malignant and benign fasciculations. Acta neurologica Scandinavica Supplementum 1965; 13: 251-254
  • 3 Fermont J, Arts IMP, Overeem S. et al. Prevalence and distribution of fasciculations in healthy adults: Effect of age, caffeine consumption and exercise. Amyotrophic lateral sclerosis: official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases 2010; 11: 181-186
  • 4 Reed DM, Kurland LT. Muscle Fasciculations in a Healthy Population. Arch Neurol-chicago 1963; 9: 363-367
  • 5 de Carvalho M, Kiernan MC, Swash M. Fasciculation in amyotrophic lateral sclerosis: origin and pathophysiological relevance. J Neurology Neurosurg Psychiatry 2017; 88: 773
  • 6 Kleine BU, Stegeman DF, Schelhaas HJ. et al. Firing pattern of fasciculations in ALS: evidence for axonal and neuronal origin. Neurology 2008; 70: 353-359
  • 7 Hirota N, Eisen A, Weber M. Complex fasciculations and their origin in amyotrophic lateral sclerosis and Kennedy’s disease. Muscle Nerve 2000; 23: 1872-1875
  • 8 de Carvalho M, Swash M. Origin of fasciculations in amyotrophic lateral sclerosis and benign fasciculation syndrome. JAMA Neurology 2013; 70: 1562-1565
  • 9 Eisen A, Braak H, Tredici KD. et al. Cortical influences drive amyotrophic lateral sclerosis. J Neurology Neurosurg Psychiatry 2017; 88: 917
  • 10 de Carvalho M, Dengler R, Eisen A. et al. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 2008; 119: 497-503
  • 11 Shefner JM, Al-Chalabi A, Baker MR. et al. A Proposal for New Diagnostic Criteria for ALS. Clin Neurophysiol 2020; 131: 1975-1978
  • 12 Vázquez-Costa JF, Campins-Romeu M, Martínez-Payá JJ. et al. New insights into the pathophysiology of fasciculations in amyotrophic lateral sclerosis: An ultrasound study. Clin Neurophysiol 2018; 129: 2650-2657
  • 13 Tenner F, Schramm A, Söhle M. et al. Towards a Multi-Sensor System for the Diagnosis of Neurological Disorders 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) 2016; 495-500 , doi: 10.1109/AIM.2016.7576816
  • 14 Tenner F, Regensburger M, Schramm A. et al. Evaluation of a Laser-Based Sensor for the Diagnosis of Neurological Disorders. 2017 39th Annu Int Conf Ieee Eng Medicine Biology Soc Embc 2017; 2017: 4231-4234
  • 15 Botter A, Carbonaro M, Vieira TM. et al. Identification of muscle fasciculations from surface EMG: comparison with ultrasound-based detection*. 2019 41st Annu Int Conf Ieee Eng Medicine Biology Soc Embc 2019; 00: 5117-5120
  • 16 King JC, Dumitru D, Nandedkar S. Concentric and single fiber electrode spatial recording characteristics. Muscle Nerve 1997; 20: 1525-1533
  • 17 Dumitru D, King JC, Nandedkar SD. Concentric/monopolar needle electrode modeling: spatial recording territory and physiologic implications. Electroencephalography and clinical neurophysiology 1997; 105: 370-378
  • 18 Stålberg E, Trontelj J. Single Fiber Electromyography: Studies in Healthy and Diseased Muscle. Raven Press; 1994
  • 19 Regensburger M, Tenner F, Möbius C. et al. Detection radius of EMG for fasciculations: Empiric study combining ultrasonography and electromyography. Clin Neurophysiol 2018; 129: 487-493
  • 20 Gootzen TH, Vingerhoets DJ, Stegeman DF. A study of motor unit structure by means of scanning EMG. Muscle Nerve 1992; 15: 349-357
  • 21 Whittaker RG, Porcari P, Braz L. et al. Functional magnetic resonance imaging of human motor unit fasciculation in amyotrophic lateral sclerosis. Ann Neurol 2019; 85: 455-459
  • 22 Walker FO, Donofrio PD, Harpold GJ. et al. Sonographic imaging of muscle contraction and fasciculations: a correlation with electromyography. Muscle Nerve 1990; 13: 33-39
  • 23 Reimers CD, Ziemann U, Scheel A. et al. Fasciculations: clinical, electromyographic, and ultrasonographic assessment. Journal of Neurology 1996; 243: 579-584
  • 24 Hagiwara Y, Shimizu T, Yanagisawa T. et al. Utility of transoral motion-mode ultrasonography to detect tongue fasciculation in patients with amyotrophic lateral sclerosis. Muscle Nerve 2021; 63: 909-913
  • 25 Krämer HH, Vlazak A, Döring K. et al. Excellent interrater agreement for the differentiation of fasciculations and artefacts – a dynamic myosonography study. Clin Neurophysiol 2014; 125: 2441-2445
  • 26 Noto Y-I, Shibuya K, Shahrizaila N. et al. Detection of fasciculations in amyotrophic lateral sclerosis: The optimal ultrasound scan time. Muscle Nerve 2017;
  • 27 Misawa S, Noto Y, Shibuya K. et al. Ultrasonographic detection of fasciculations markedly increases diagnostic sensitivity of ALS. Neurology 2011; 77: 1532-1537
  • 28 Arts IMP, Overeem S, Pillen S. et al. Muscle ultrasonography: a diagnostic tool for amyotrophic lateral sclerosis. Clin Neurophysiol 2012; 123: 1662-1667
  • 29 Grimm A, Prell T, Décard BF. et al. Muscle ultrasonography as an additional diagnostic tool for the diagnosis of amyotrophic lateral sclerosis. Clin Neurophysiol 2015; 126: 820-827
  • 30 Tsuji Y, Noto Y, Shiga K. et al. A muscle ultrasound score in the diagnosis of amyotrophic lateral sclerosis. Clin Neurophysiol 2017; 128: 1069-1074
  • 31 Fukushima K, Takamatsu N, Yamamoto Y. et al. Early diagnosis of amyotrophic lateral sclerosis based on fasciculations in muscle ultrasonography: A machine learning approach. Clin Neurophysiol 2022; 140: 136-144
  • 32 Liu J, Li Y, Niu J. et al. Fasciculation differences between ALS and non-ALS patients: an ultrasound study. Bmc Neurol 2021; 21: 441
  • 33 Bokuda K, Shimizu T, Kimura H. et al. Relationship between EMG-detected and ultrasound-detected fasciculations in amyotrophic lateral sclerosis: A prospective cohort study. Clin Neurophysiol 2020; 131: 259-264
  • 34 Tsuji Y, Noto Y, Kitaoji T. et al. Difference in distribution of fasciculations between multifocal motor neuropathy and amyotrophic lateral sclerosis. Clin Neurophysiol 2020; 131: 2804-2808
  • 35 Pillen S, Nienhuis M, Dijk JPvan. et al. Muscles alive: Ultrasound detects fibrillations. Clin Neurophysiol 2009; 120: 932-936
  • 36 Tsugawa J, Dharmadasa T, Ma Y. et al. Fasciculation intensity and disease progression in amyotrophic lateral sclerosis. Clin Neurophysiol 2018; 129: 2149-2154
  • 37 Avidan R, Fainmesser Y, Drory VE. et al. Fasciculation frequency at the biceps brachii and brachialis muscles is associated with amyotrophic lateral sclerosis disease burden and activity. Muscle Nerve 2021; 63: 204-208
  • 38 Gijsbertse K, Bakker M, Sprengers A. et al. Computer-aided detection of fasciculations and other movements in muscle with ultrasound: Development and clinical application. Clin Neurophysiol 2018; 129: 2567-2576
  • 39 Bibbings K, Harding PJ, Loram ID. et al. Foreground Detection Analysis of Ultrasound Image Sequences Identifies Markers of Motor Neurone Disease across Diagnostically Relevant Skeletal Muscles. Ultrasound in medicine & biology 2019; 45: 1164-1175