CC BY 4.0 · SynOpen 2023; 07(01): 121-129
DOI: 10.1055/a-2025-2759
paper

CN-Doped Cobalt Oxide Composite: An Economic and Reusable Catalyst with Multitasking Catalytic Capability for Alkyne and Nitrile Hydrations and Nitro Reductions

Avinash K. Srivastava
,
Himanshu Khandaka
,
Raj K. Joshi thanks the CSIR (Grant no. 01(2996)/19/EMR-II) for financial assistance.


Abstract

A heterogeneous CoOCN composite was synthesized via a one-pot reaction of [Co(NO3)2] and urea at 500 °C in a muffle furnace. The composite was fully characterized by FTIR, Raman, powder XRD, and XPS techniques. The catalyst was found to be efficient for the hydrations of aryl alkynes and nitriles under aerobic conditions. In addition, the catalyst exhibits high catalytic performance for the reduction of nitroarenes under inert gas-free conditions. This multitasking CoOCN composite was found to be highly suitable for all derivatives of nitrobenzene, alkynes, and nitriles because good to excellent yields were obtained. The catalyst was recovered quantitatively from the reaction mixture by simple filtration and consequently reused for seven consecutive cycles in all reactions without significant loss of catalytic activity. Hence, the synthesized CN-doped CoOCN composite worked as a multitasking catalyst for various value-added organic transformations, and it is highly economical and reusable for up to seven catalytic cycles without any activation, with even the last cycle producing reasonable yields of up to 48–50%.

Supporting Information



Publikationsverlauf

Eingereicht: 20. Dezember 2022

Angenommen nach Revision: 02. Februar 2023

Accepted Manuscript online:
02. Februar 2023

Artikel online veröffentlicht:
27. März 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany