Subscribe to RSS
DOI: 10.1055/a-2029-0488
Catalyst- and Additive-Free Electrochemical CO2 Fixation into Morita–Baylis–Hillman Acetates
We acknowledge the Università di Bologna (University of Bologna) for financial support. M.B. is also grateful to Ministero dell’Istruzione, dell’Università e della Ricerca PRIN-2017 (project 2017W8KNZW).
Abstract
The electrochemical carboxylation of Morita–Baylis–Hillman (MBH) acetates with CO2 is presented. The process proceeds in the absence of transition-metal catalysts and relies on the cathodic reduction of MBH acetates to generate nucleophilic anions that are able to trap low-pressure CO2. Valuable succinate derivatives are obtained (20 examples) in high yields (up to 90%) and with excellent functional group tolerance. A remarkable substrate-controlled (electronic nature) regioselectivity of the transformation is documented along with a mechanistic rationale based on control experiments.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2029-0488.
- Supporting Information
Publication History
Received: 23 December 2022
Accepted after revision: 06 February 2023
Accepted Manuscript online:
06 February 2023
Article published online:
28 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Fuchigami T, Inagi S, Atobe M. Fundamentals and Applications of Organic Electrochemistry . John Wiley & Sons; Chichester: 2020
- 1b Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
- 1c Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 1d Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
- 1e Shatskiy A, Lundberg V, Kärkäs MD. ChemElectroChem 2019; 6: 4067
- 1f Hilt G. ChemElectroChem 2019; 7: 395
- 1g Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BY, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
- 1h Yuan Y, Lei A. Nat. Commun. 2020; 11: 802
- 1i Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
- 1j Zhu C, Ang NW. G, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
- 1k McKenzie EC. R, Hosseini S, Couto Petro AG, Rudman KK, Gerroll BH. R, Mubarak MS, Baker LA, Little RD. Chem. Rev. 2022; 122: 3292
- 1l Leech MC, Lam K. Nat. Rev. Chem. 2022; 6: 275
- 2a Verschueren RH, De Borggraeve WM. Molecules 2019; 24: 2122
- 2b Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
- 2c Rafiee M, Mayer MN, Punchihewa BT, Mumau MR. J. Org. Chem. 2021; 86: 15866
- 2d Liu C, Li R, Zhou W, Liang Y, Shi Y, Li R.-L, Ling Y, Yu Y, Li J, Zhang B. ACS Catal. 2021; 11: 8958
- 2e Davey SG. Nat. Chem. Rev. 2021; 5: 837
- 2f Tai NE. S, Lehnherr D, Rovis T. Chem. Rev. 2022; 122: 2487
- 3a Sakakura T, Choi J.-C, Yasuda Y. Chem. Rev. 2007; 107: 2365
- 3b Carbon Dioxide as Chemical Feedstock. Aresta M. Wiley–VCH; Weinheim: 2010
- 3c Aresta M, Dibenedetto A, Angelini A. Chem. Rev. 2014; 114: 1709
- 3d Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
- 3e Zhang L, Hou Z. Curr. Opin. Green Sustainable Chem. 2017; 3: 17
- 3f Zhang Z, Ye J.-H, Wu D.-S, Zhou Y.-Q, Yu D.-G. Chem. Asian J. 2018; 13: 2292
- 3g Chen Y.-G, Xu X.-T, Zhang K, Li Y.-Q, Zhang L.-P, Fang P, Mei T.-S. Synthesis 2018; 50: 35
- 3h Cabrero-Antonino JR, Adam R, Beller M. Angew. Chem. Int. Ed. 2019; 58: 12820
- 3i Dabral S, Schaub T. Adv. Synth. Catal. 2019; 361: 223
- 3j Ran C.-K, Liao L.-L, Gao T.-Y, Gui Y.-Y, Yu D.-G. Curr. Opin. Green Sustainable Chem. 2021; 32: 100525
- 3k Ran C.-K, Xiao H.-Z, Liao L.-L, Ju T, Zhang W, Yu D.-G. Natl. Sci. Open 2023; 2: 20220024
- 4a Hong J, Li M, Zhang J, Sun B, Mo F. ChemSusChem 2019; 12: 6
- 4b Pimparkar S, Dalvi AK, Koodan A, Maiti S, Al-Thabaiti SA, Mokhtar M, Dutta A, Lee YR, Maiti D. Green Chem. 2021; 23: 9283
- 4c Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Acc. Chem. Res. 2021; 54: 2518
- 5a Börjesson M, Moragas T, Gallego D, Martin D. ACS Catal. 2016; 6: 6739
- 5b Luo J, Larrosa I. ChemSusChem 2017; 10: 3317
- 5c Gaydou M, Moragas T, Julià-Hernàndez F, Martin R. J. Am. Chem. Soc. 2017; 139: 12161
- 5d Yi Y, Hang W, Xi C. Chin. J. Org. Chem. 2021; 41: 80
- 5e Mita T, Higuci Y, Sato Y. Chem. Eur. J. 2015; 21: 16391
- 5f Chen Y.-G, Shuai B, Ma C, Zhang X.-J, Fang P, Mei T.-S. Org. Lett. 2017; 19: 2969
- 5g van Gemmeren M, Börjesson M, Tortajada A, Sun S.-Z, Okura K, Martin R. Angew. Chem. Int. Ed. 2017; 56: 6558
- 5h Liu D, Xu Z, Yu H, Fu Y. Organometallics 2021; 40: 869
- 6a Yu Z, Shi M. Chem. Commun. 2022; 58: 13539
- 6b Liu X.-F, Zhang K, Tao L, Lu X.-B, Zhang W.-Z. Green Chem. Eng. 2022; 3: 125
- 6c Jiao KJ, Li Z.-M, Xu X.-T, Zhang L.-P, Li Y.-Q, Zhang K, Mei TS. Org. Chem. Front. 2018; 5: 2244
- 6d Bazzi S, Le Duc G, Schulz E, Gosmini C, Mellah M. Org. Biomol. Chem. 2019; 17: 8546
- 6e Wu L.-X, Zhao Y.-G, Guan Y.-B, Wang H, Lan Y.-C, Wang H, Lu J.-X. RSC Adv. 2019; 9: 32628
- 6f Ang NW. J, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 12842
- 6g Sun G.-Q, Zhang W, Liao L.-L, Li L, Nie Z.-H, Wu J.-G, Zhang D, Yu D.-G. Nat. Commun. 2021; 12: 7086
- 6h Wu L.-X, Deng F.-J, Wu L, Wang H, Chen T, Guan Y.-B, Lu J.-X. New J. Chem. 2021; 45: 13137
- 6i Wang G, Chen Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Chem. Soc. Rev. 2021; 50: 4993
- 6j Wang S, Feng T, Wang Y, Qiu Y. Chem. Asian J. 2022; 17: e202200543
- 7a Yang D.-T, Zhu M, Schiffer ZJ, Williams K, Song X, Liu X, Manthiram K. ACS Catal. 2019; 9: 4699
- 7b Zhong J.-S, Yang Z.-X, Ding C.-L, Huang Y.-F, Zhao Y, Yan H, Ye K.-Y. J. Org. Chem. 2021; 86: 16162
- 7c Liao L.-L, Wang Z.-H, Cao K.-G, Sun G.-Q, Zhang W, Ran C.-K, Li Y, Chen L, Cao G.-M, Yu D.-G. J. Am. Chem. Soc. 2022; 144: 2062
- 7d Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202207746
- 7e Chen R, Tian K, He D, Gao T, Yang G, Xu J, Chen H, Wang D, Zhang Y. ACS Appl. Energy Mater. 2020; 3 5813
- 7f Zhang W, Lin S. J. Am. Chem. Soc. 2020; 142: 20661
- 7g Gao X.-T, Zhang Z, Wang X, Tian J.-S, Xie S.-L, Zhou F, Zhou J. Chem. Sci. 2020; 11: 10414
- 7h Alkayal A, Tabas V, Montanaro S, Wright IA, Malkov AV, Buckley BR. J. Am. Chem. Soc. 2020; 142: 1780
- 7i Sheta AM, Alkayal A, Mashaly MA, Said SB, Elmorsy SS, Malkov AV, Buckley BR. Angew. Chem. Int. Ed. 2021; 60: 21832
- 7j Zhao R, Lin Z, Maksso I, Struwe J, Ackermann L. ChemElectroChem 2022; 9: e202200989
- 8a Cerveri A, Pace S, Monari M, Lombardo M, Bandini M. Chem. Eur. J. 2019; 25: 15272
- 8b Cerveri A, Giovanelli R, Sella D, Pedrazzani R, Monari M, Nieto Faza O, Silva Lòpez C, Bandini M. Chem. Eur. J. 2021; 27: 7657
- 8c Lombardi L, Cerveri A, Ceccon L, Pedrazzani R, Monari M, Bertuzzi G, Bandini M. Chem. Commun. 2022; 58: 4071
- 8d Pintus A, Mantovani S, Kovtun A, Bertuzzi G, Melucci M, Bandini M. Chem. Eur. J. 2022; e202202440
- 9a Bertuzzi G, Ombrosi G, Bandini M. Org. Lett. 2022; 24: 4354
- 9b Rapisarda L, Fermi A, Ceroni P, Giovanelli R, Bertuzzi G, Bandini M. Chem. Commun. 2023; 59: 2664
- 10 For a review on reductive electrosynthetic methods, see: Claraz A, Masson G. ACS Org. Inorg. Au 2022; 2: 126
- 11 During the preparation of this manuscript a Pd-catalyzed electrochemical carboxylation of MBH acetates was reported, see: Tummanappalli S, Gulipalli KC, Endoori S, Bodige S, Pommidi AK, Medaboina S, Rejinthala S, Choppadandi S, Boya R, Kanuka A, Valluri M. Tetrahedron Lett. 2022; 104: 154022
- 12a Qi J, Zheng J, Cui S. Org. Lett. 2018; 20: 1355
- 12b Ye H, Ye Q, Cheng D, Li X, Xu X. Tetrahedron Lett. 2018; 59: 2046
- 12c Ye H, Zhao H, Ren S, Ye H, Cheng D, Li X, Xu X. Tetrahedron Lett. 2019; 60: 1302
- 12d Yadav AK, Sharma AK, Singh KN. Org. Chem. Front. 2019; 6: 989
- 12e Paria S, Carletti E, Marcon M, Cherubini-Celli A, Mazzanti A, Rancan M, Dell’Amico L, Bonchio M, Companyò X. J. Org. Chem. 2020; 85: 4463
- 12f Bai X, Qian L, Zhang H.-H, Yu S. Org. Lett. 2021; 23: 8322
- 13a Liu TY, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
- 13b Basavaiah D, Naganaboina RT. New J. Chem. 2018; 42: 14036
- 13c List B, Grossman O. Synfacts 2019; 15: 295
- 13d Calcatelli A, Cherubini-Celli A, Carletti E, Companyò X. Synthesis 2020; 52: 2922
- 14a Delhomme C, Weuster-Botz D, Kühn FE. Green Chem. 2009; 11: 13
- 14b Doulut S, Dubuc I, Rodriguez M, Vecchini F, Fulcrand H, Barelli H, Checler F, Bourdel E, Aumelas A, Lallement JC, Kitabgi P, Costentin J, Martinez J. J. Med. Chem. 1993; 36: 1369
- 14c Bilenko V, Jiao H, Spannenberg A, Fischer C, Reinke H, Kösters J, Komarov I, Börner A. Eur. J. Org. Chem. 2007; 5: 758
- 15a Koppenol WH, Rush JD. J. Phys. Chem. 1987; 91: 4429
- 15b Huang Y, Zhang Q, Hua L.-L, Zhan L.-W, Hou J, Li B.-D. Cell Rep. Phys. Sci. 2022; 3: 100994
- 16a Batchu H, Bhattacharyya S, Batra S. Org. Lett. 2012; 14: 6330 ; and references cited therein
- 16b The acetylation of the MBH adducts was carried out following the methodology reported in: Annunziata R, Benaglia M, Cinquini M, Cozzi F, Raimondi L. J. Org. Chem. 1995; 60: 4697
- 17 Mason PH, Emslie ND. Tetrahedron 1994; 50: 12001
For relevant examples targeting allyl electrophiles for the production of unsaturated acids, see:
For recent reviews, see:
For relevant examples of electrochemical metal-catalyzed carboxylations with CO2, see:
Selected examples of metal-free electrochemical carboxylations with CO2. Direct carboxylation of alkyl electrophiles bearing a leaving group, see:
Direct carboxylation involving the opening of three-membered rings:
Direct carboxylation of reactive double bonds:
For selected examples of MBH acetates as electrophilic acceptors of nucleophilic radicals, see:
For amine- or phosphine-catalyzed reactions featuring MBH acetates as pronucleophiles, see:
For alternative preparations of 2, see for example:
For the MBH reaction of aldehydes and acrylates see the Supporting Information of: