CC BY 4.0 · SynOpen 2023; 07(01): 102-109
DOI: 10.1055/a-2035-6493
paper
Virtual Collection Click Chemistry and Drug Discovery

A Chitosan Hydrochloride Mediated, Simple and Efficient Approach for the Synthesis of Hydrazones, their in vitro Antimycobacterial Evaluations, and Molecular Modeling Studies (Part III)

Suraj N. Mali
a   Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand-835215, India
,
Anima Pandey
a   Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand-835215, India
,
Bapu Thorat
b   Department of Chemistry, Government College of Arts and Science, Aurangabad, MS – 431001, India
› Author Affiliations
S.M. is thankful to the Head of the Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra for the provision of IRF (2022–2023; Ref. DPGS/Ph.D/IRF/2022-23/15, DATED 16-08-2022), from the Birla Institute of Technology, Mesra.


This article is dedicated to my lovely parents, and my younger brother Sagar Mali, who deep-heartedly supported me to achieve my goals

Abstract

A simple, eco-friendly and straightforward synthesis of hydrazones has been devised that is conducted in the presence of chitosan Hydrochloride (chitosan·HCl) as catalyst in aqueous-ethanol medium at room temperature. The current protocol offers metal-free synthesis, adaptability to large-scaleup, good yields, and quicker reaction time. All ten synthesized hydrazones also showed good antimycobacterial activity, with minimum inhibitory concentrations (MICs) ranging from 3.12 to 6.25 μg/mL. One of the products presented strong binding affinity against M. tuberculosis pantothenate synthetase (pdb id: 3IVX) with a Glide docking score of –8.803 kcal/mol. Molecular dynamics simulation analysis of its complex with 3IVX retained good stability over the simulation period of 20 ns.

Supporting Information



Publication History

Received: 16 January 2023

Accepted after revision: 14 February 2023

Accepted Manuscript online:
14 February 2023

Article published online:
07 March 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany