CC BY 4.0 · SynOpen 2023; 07(01): 102-109
DOI: 10.1055/a-2035-6493
paper
Virtual Collection Click Chemistry and Drug Discovery

A Chitosan Hydrochloride Mediated, Simple and Efficient Approach for the Synthesis of Hydrazones, their in vitro Antimycobacterial Evaluations, and Molecular Modeling Studies (Part III)

Suraj N. Mali
a   Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand-835215, India
,
Anima Pandey
a   Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand-835215, India
,
Bapu Thorat
b   Department of Chemistry, Government College of Arts and Science, Aurangabad, MS – 431001, India
› Author Affiliations
S.M. is thankful to the Head of the Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra for the provision of IRF (2022–2023; Ref. DPGS/Ph.D/IRF/2022-23/15, DATED 16-08-2022), from the Birla Institute of Technology, Mesra.


This article is dedicated to my lovely parents, and my younger brother Sagar Mali, who deep-heartedly supported me to achieve my goals

Abstract

A simple, eco-friendly and straightforward synthesis of hydrazones has been devised that is conducted in the presence of chitosan Hydrochloride (chitosan·HCl) as catalyst in aqueous-ethanol medium at room temperature. The current protocol offers metal-free synthesis, adaptability to large-scaleup, good yields, and quicker reaction time. All ten synthesized hydrazones also showed good antimycobacterial activity, with minimum inhibitory concentrations (MICs) ranging from 3.12 to 6.25 μg/mL. One of the products presented strong binding affinity against M. tuberculosis pantothenate synthetase (pdb id: 3IVX) with a Glide docking score of –8.803 kcal/mol. Molecular dynamics simulation analysis of its complex with 3IVX retained good stability over the simulation period of 20 ns.

Supporting Information



Publication History

Received: 16 January 2023

Accepted after revision: 14 February 2023

Accepted Manuscript online:
14 February 2023

Article published online:
07 March 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Popiołek Ł. Med. Chem. Res. 2017; 26: 287
  • 2 Popiołek Ł. Int. J. Mol. Sci. 2021; 22: 9389
  • 3 Mali SN, Thorat BR, Gupta DR, Pandey A. Eng. Proc. 2021; 11: 21
  • 4 Thiyagarajan S, Gunanathan C. Org. Lett. 2020; 22: 6617
  • 5 DeMarinis RM, Hoover JR. E, Dunn GL, Actor P, Uri JV, Weisbach J. J. Antibiot. 1975; 28: 463
  • 6 Elnagdi MH, Erian AW. Arch. Pharm. 1991; 324: 853
  • 7 Costales MJ, Kleschick WA, Ehr RJ, Weimer MR. US Patent 5,763,359, 9 June, 1998
  • 8 Gemma S, Kukreja G, Fattorusso C, Persico M, Romano MP, Altarelli M, Savini L, Campiani G, Fattorusso E, Basilico N. Bioorg. Med. Chem. Lett. 2006; 16: 5384
  • 9 Bijev A. Lett. Drug Des. Discovery 2006; 3: 506
  • 10 Ragavendran JV, Sriram D, Patel SK, Reddy IV, Bharathwajan N, Stables J, Yogeeswari P. Eur. J. Med. Chem. 2007; 42: 146
  • 11 Todeschini AR, de Miranda AL. P, da Silva KC. M, Parrini SC, Barreiro EJ. Eur. J. Med. Chem. 1998; 33: 189
  • 12 Ergenç N, Günay NS, Demirdamar R. Eur. J. Med. Chem. 1998; 33: 143
  • 13 Deep A, Jain S, Sharma PC, Verma P, Kumar M, Dora CP. Synthesis 2010; 183
  • 14 Masunari A, Tavares LC. Bioorg. Med. Chem. 2007; 15: 4229
  • 15 Fahmy SM, Badran AH, Elnagdi MH. J. Chem. Technol. Biotechnol. 1980; 30: 390
  • 16 Abdel-Wahab BF, Awad GE, Badria FA. Eur. J. Med. Chem. 2011; 46: 1505
  • 17 Palekar VS, Damle AJ, Shukla SR. Eur. J. Med. Chem. 2009; 44: 5112
  • 18 Zhong NJ, Wang YZ, Cheng L. Org. Biomol. Chem. 2018; 16: 5214
  • 19 Özkay Y, Tunalı Y, Karaca H, Işıkdağ İ. Eur. J. Med. Chem. 2010; 45: 3293
  • 20 Abdel-Aziz HA, Mekawey AA. Eur. J. Med. Chem. 2009; 44: 4985
  • 21 Verma G, Marella A, Shaquiquzzaman M, Akhtar M, Ali MR, Alam MM. J. Pharm. Bioallied Sci. 2014; 6: 69
  • 22 Küçükgüzel ŞG, Oruç EE, Rollas S, Şahin F, Özbek A. Eur. J. Med. Chem. 2002; 37: 197
  • 23 Asif M. Int. J. Adv. Chem. 2014; 2: 85
  • 24 Rollas S, Gulerman N, Erdeniz H. Farmaco 2002; 57: 171
  • 25 Jubie S, Meena S, Ramaseshu KV, Jawahar N, Vijayakumar S. Indian J. Chem. 2010; 49: 1261
  • 26 Govindasami T, Pandey A, Palanivelu N, Pandey A. Int. J. Org. Chem. 2011; 1: 71
  • 27 Tavares LC, Chiste JJ, Santos MG, Penna TC. II. Boll. Chim. Farm. 1999; 138: 432
  • 28 Ulusoy N, Çapan G, Otük G, Kiraz M. Boll. Chim. Farm. 2000; 139: 167
  • 29 Szmant HH, McGinnis C. J. Am. Chem. Soc. 1950; 72: 2890
  • 30 Kiasat AR, Kazemi F, Nourbakhsh K. Phosphorus, Sulfur Silicon Relat. Elem. 2004; 179: 569
  • 31 Polshettiwar V, Varma RS. Tetrahedron Lett. 2007; 48: 5649
  • 32 Chakraborti AK, Bhagat S, Rudrawar S. Tetrahedron Lett. 2004; 45: 7641
  • 33 Lalitha A, Pitchumani K, Srinivasan C. Green Chem. 1999; 1: 173
  • 34 Niknam K, Kiasat AR, Karimi S. Synth. Commun. 2005; 35: 2231
  • 35 Yadav UN, Shankarling GS. J. Mol. Liq. 2014; 191: 137
  • 36 Parveen M, Azaz S, Malla AM, Ahmad F, da Silva PS. P, Silva MR. New J. Chem. 2015; 39: 469
    • 37a Jarikote DV, Deshmukh RR, Rajagopal R, Lahoti RJ, Daniel T, Srinivasan KV. Ultrason. Sonochem. 2003; 10: 45
    • 37b Lima Leite AC, Moreira DR. d. M, Duarte Coelho LC, de Menezes FD, Brondani DJ. Tetrahedron Lett. 2008; 49: 1538
  • 38 Gadhwal S, Baruah M, Sandhu JS. Synlett 1999; 1573
  • 39 Zhang M, Shang ZR, Li XT, Zhang JN, Wang Y, Li K, Li YY, Zhang ZH. Synth. Commun. 2017; 47: 178
  • 40 Shelke PB, Mali SN, Chaudhari HK, Pratap AP. J. Heterocycl. Chem. 2019; 56: 3048
  • 41 Mali SN, Pandey A. Curr. Comput.-Aided Drug Des. 2022; 25: 771
  • 42 Bhosale D, Mali SN, Thorat BR, Wavhal SS, Bhagat DS, Borade RM. Recent Pat. Anti-Infect. Drug Discovery 2022; 17: 69
  • 43 Mali SN, Pandey A. J. Comput. Biophys. Chem. 2022; 21: 857
  • 44 Desale VJ, Mali SN, Thorat BR, Yamgar RS. Curr. Comput.-Aided Drug Des. 2021; 17: 493
  • 45 Thorat BR, Mali SN, Rani D, Yamgar RS. Curr. Comput.-Aided Drug Des. 2021; 17: 294
  • 46 Mali SN, Pandey A, Thorat BR, Lai C.-H. Chem. Proc. 2022; 8: 86
  • 47 Desale VJ, Mali SN, Chaudhari HK, Mali MC, Thorat BR, Yamgar RS. Curr. Comput.-Aided Drug Des. 2020; 16: 618
  • 48 Thorat BR, Rani D, Yamgar RS, Mali SN. Comb. Chem. High Throughput Screening 2020; 23: 392
  • 49 Mishra VR, Ghanavatkar CW, Mali SN, Qureshi SI, Chaudhari HK, Sekar N. Comput. Biol. Chem. 2019; 78: 330
  • 50 Mali SN, Pandey A. J. Comput. Biophys. Chem. 2022; 21: 83
  • 51 Kapale SS, Mali SN, Chaudhari HK. Med. Drug Discovery 2019; 2: 100008
  • 52 Kshatriya R, Shelke P, Mali S, Yashwantrao G, Pratap A, Saha S. ChemistrySelect 2021; 6: 6230
  • 53 Mali SN, Pandey A, Thorat BR, Lai CH. Struct. Chem. 2022; 33: 679
  • 54 Mali SN, Pandey A. J. Indian Chem. Soc. 2021; 98: 100082
  • 55 Mali SN, Pandey A, Bhandare RR, Shaik AB. Sci. Rep. 2022; 12: 16368
  • 56 Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y. Bioinformatics 2019; 35: 1067
  • 57 Ioakimidis L, Thoukydidis L, Mirza A, Naeem S, Reynisson J. QSAR Comb. Sci. 2008; 27: 445
  • 58 Parveen M, Azaz S, Malla AM, Ahmad F, da Silva PS. P, Silva MR. New J. Chem. 2015; 39: 469