CC BY 4.0 · SynOpen 2023; 07(01): 88-101
DOI: 10.1055/a-2035-6733
graphical review

Amide N–C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling

Chengwei Liu
a   Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. of China
b   Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
,
b   Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
› Institutsangaben
We thank the National Science Foundation (NSF) (CAREER CHE-1650766), the National Institutes of Health (NIH) (R35GM133326), Rutgers University, the Overseas High-Level Talents Fund of Shanghai, and Shanghai University for generous support.


Abstract

This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N–C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling, together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.



Publikationsverlauf

Eingereicht: 13. Januar 2023

Angenommen nach Revision: 14. Februar 2023

Accepted Manuscript online:
14. Februar 2023

Artikel online veröffentlicht:
06. März 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Amide Bond Activation: Concepts and Reactions. Szostak M. Wiley-VCH; Weinheim: 2022
    • 1b Hie L, Fine Nathel NF, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
    • 1c Meng G, Szostak M. Org. Lett. 2015; 17: 4364
    • 1d Li X, Zou G. Chem. Commun. 2015; 51: 5089
    • 1e Szostak M, Aube J. Chem. Rev. 2013; 113: 5701
    • 1f Meng G, Zhang J, Szostak M. Chem. Rev. 2021; 121: 12746
    • 1g Meng G, Shi S, Szostak M. Synlett 2016; 27: 2530
    • 1h Liu C, Szostak M. Chem. Eur. J. 2017; 23: 7157
    • 1i Meng G, Szostak M. Eur. J. Org. Chem. 2018; 2352
    • 1j Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
    • 1k Kaiser D, Bauer A, Lemmerer M, Maulide N. Chem. Soc. Rev. 2018; 47: 7899
    • 1l Dander JE, Garg NK. ACS Catal. 2017; 7: 1413
    • 1m Adachi S, Kumagai N, Shibasaki M. Tetrahedron Lett. 2018; 59: 1147
    • 1n Guo L, Rueping M. Chem. Eur. J. 2018; 24: 7794
    • 1o Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2019; 25: 2663
    • 1p Chaudhari MB, Gnanaprakasam B. Chem. Asian J. 2019; 14: 76
    • 1q Li G, Ma S, Szostak M. Trends Chem. 2020; 2: 914
    • 1r Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. J. Org. Chem. 2023; 88 DOI: 10.1021/acs.joc.2c01094.
    • 1s Feng M, Zhang H, Maulide N. Angew. Chem. Int. Ed. 2022; 61: e202212213
    • 1t Liu C, Meng G, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2016; 18: 4194
    • 1u Meng G, Szostak R, Szostak M. Org. Lett. 2017; 19: 3596
    • 1v Osumi Y, Liu C, Szostak M. Org. Biomol. Chem. 2017; 15: 8867
    • 1w Rahman MM, Buchspies J, Szostak M. Catalysts 2019; 9: 129
    • 1x Jian J, He Z, Zhang Y, Liu T, Liu L, Wang Z, Wang H, Wang S, Zeng Z. Eur. J. Org. Chem. 2020; 4176
    • 1y Buchspies J, Rahman MM, Szostak R, Szostak M. Org. Lett. 2020; 22: 4703
    • 1z Meng G, Szostak M. Org. Biomol. Chem. 2016; 14: 5690
    • 1aa Wu H, Li Y, Cui M, Jian J, Zeng Z. Adv. Synth. Catal. 2016; 358: 3876
    • 1ab Cui M, Chen Z, Liu T, Wang H, Zeng Z. Tetrahedron Lett. 2017; 58: 3819
    • 1ac Wang T, Guo J, Wang H, Guo H, Jia D, Zhang W, Liu L. J. Organomet. Chem. 2018; 877: 80
    • 1ad Liu C, Lalancette R, Szostak R, Szostak M. Org. Lett. 2019; 21: 7976
    • 1ae Rahman MM, Liu C, Bisz E, Dziuk B, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. J. Org. Chem. 2020; 85: 5475
    • 1af Ma S, Zhou T, Li G, Szostak M. Adv. Synth. Catal. 2020; 362: 1887
    • 1ag Luo Z, Liu T, Guo W, Wang Z, Huang J, Zhu Y, Zeng Z. Org. Process Res. Dev. 2018; 22: 1188
    • 1ah Wang CA, Liu C, Szostak M. Org. Process Res. Dev. 2020; 24: 1043
    • 1ai Rahman MM, Pyle DJ, Bisz E, Dziuk B, Ejsmont K, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. J. Org. Chem. 2021; 86: 10455
    • 2a Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
    • 2b Meng G, Lalancette R, Szostak R, Szostak M. Org. Lett. 2017; 19: 4656
    • 2c Liu C, Li G, Shi S, Meng G, Lalancette R, Szostak R, Szostak M. ACS Catal. 2018; 8: 9131
    • 2d Liu C, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2017; 19: 1434
    • 2e Lim M, Kim H, Ban J, Son J, Lee JK, Min SJ, Lee SU, Rhee H. Eur. J. Org. Chem. 2018; 5717
    • 2f Shi S, Lalancette R, Szostak R, Szostak M. Org. Lett. 2019; 21: 1253
    • 2g Meng G, Shi S, Szostak M. ACS Catal. 2016; 6: 7335
    • 2h Zhang Y, Wang Z, Tang Z, Luo Z, Wu H, Liu T, Zhu Y, Zeng Z. Eur. J. Org. Chem. 2020; 1620
    • 2i Li X, Zou G. J. Organomet. Chem. 2015; 794: 136
    • 2j Szostak R, Shi S, Meng G, Lalancette R, Szostak M. J. Org. Chem. 2016; 81: 8091
    • 2k Pace V, Holzer W, Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Chem. Eur. J. 2016; 22: 14494
    • 2l Pace V, Holzer W, Ielo L, Shi S, Meng G, Hanna M, Szostak R, Szostak M. Chem. Commun. 2019; 55: 4423
    • 2m Szostak R, Meng G, Szostak M. J. Org. Chem. 2017; 82: 6373
    • 2n Meng G, Shi S, Lalancette R, Szostak R, Szostak M. J. Am. Chem. Soc. 2018; 140: 727
    • 2o Szostak R, Szostak M. Org. Lett. 2018; 20: 1342
    • 2p Szostak R, Liu C, Lalancette R, Szostak M. J. Org. Chem. 2018; 83: 14676
    • 2q Ielo L, Pace V, Holzer W, Rahman MM, Meng G, Szostak R, Szostak M. Chem. Eur. J. 2020; 26: 16246
    • 2r Liu C, Shi S, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2018; 20: 7771
    • 2s Boit TB, Weires NA, Kim J, Garg NK. ACS Catal. 2018; 8: 1003
    • 2t Mai WP, Liu Y, Sui HD, Xiao YM, Mao P, Lu K. Eur. J. Org. Chem. 2019; 7814
    • 2u Mehta MM, Boit TB, Dander JE, Garg NK. Org. Lett. 2020; 22: 1
    • 2v Shi W, Sun G, Zou G. Tetrahedron Lett. 2020; 61: 152140
    • 2w Wang CA, Rahman MM, Bisz E, Dziuk B, Szostak R, Szostak M. ACS Catal. 2022; 12: 2426
    • 2x Zhang J, Zhang P, Shao L, Wang R, Ma Y, Szostak M. Angew. Chem. Int. Ed. 2022; 61: e202114146
    • 2y Li CX, Ning Q, Zhao W, Cao HJ, Wang YP, Yan H, Lu CS, Liang Y. Chem. Eur. J. 2021; 27: 2699
    • 3a Lei P, Meng G, Szostak M. ACS Catal. 2017; 7: 1960
    • 3b Lei P, Meng G, Ling Y, An J, Szostak M. J. Org. Chem. 2017; 82: 6638
    • 3c Lei P, Meng G, Shi S, Ling Y, An J, Szostak R, Szostak M. Chem. Sci. 2017; 8: 6525
    • 3d Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
    • 3e Lei P, Meng G, Ling Y, An J, Nolan SP, Szostak M. Org. Lett. 2017; 19: 6510
    • 3f Lei P, Ling Y, An J, Nolan SP, Szostak M. Adv. Synth. Catal. 2019; 361: 5654
    • 3g Li G, Lei P, Szostak M, Casals-Cruanas E, Poater A, Cavallo L, Nolan SP. ChemCatChem 2018; 10: 3096
    • 3h Shi S, Szostak M. Chem. Commun. 2017; 53: 10584
    • 3i Zhou T, Li G, Nolan SP, Szostak M. Org. Lett. 2019; 21: 3304
    • 3j Li G, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Catal. Sci. Technol. 2020; 10: 710
    • 3k Buchspies J, Rahman MM, Szostak M. Catalysts 2020; 10: 372
    • 3l Zhou T, Ma S, Nahra F, Obled AM. C, Poater A, Cavallo L, Cazin CS. J, Nolan SP, Szostak M. iScience 2020; 23: 101377
    • 3m Lei P, Li G, Ling Y, An J, Nolan SP, Szostak M. Synthesis 2021; 53: 682
    • 3n Lei P, Mu Y, Wang Y, Wang Y, Ma Z, Feng J, Liu X, Szostak M. ACS Sustainable Chem. Eng. 2021; 9: 552
    • 3o Lei P, Wang Y, Mu Y, Wang Y, Ma Z, Feng J, Liu X, Szostak M. ACS Sustainable Chem. Eng. 2021; 9: 14937
    • 3p Buchspies J, Rahman MM, Szostak M. Molecules 2021; 26: 188
    • 3q Shi S, Szostak M. Chem. Eur. J. 2016; 22: 10420
    • 3r Shi S, Szostak M. Synthesis 2017; 49: 3602
    • 3s Shi S, Szostak M. Org. Lett. 2016; 18: 5872
    • 3t Simmons BJ, Weires NA, Dander JE, Garg NK. ACS Catal. 2016; 6: 3176
    • 3u Dorval C, Stetsiuk O, Gaillard S, Dubois E, Gosmini C, Danoun G. Org. Lett. 2022; 24: 2778
    • 3v Dorval C, Dubois E, Bourne-Branchu Y, Gosmini C, Danoun G. Adv. Synth. Catal. 2019; 361: 1777
    • 3w Bao CC, Du HZ, Luo YL, Guan BT. Commun. Chem. 2021; 4: 138
    • 3x Kim J, Park MS, Lee S, Song KH. Tetrahedron Lett. 2022; 111: 154201
    • 3y Liu C, Achtenhagen M, Szostak M. Org. Lett. 2016; 18: 2375
    • 3z Chen C, Liu P, Luo M, Zeng X. ACS Catal. 2018; 8: 5864
    • 3aa Sureshbabu P, Azeez S, Muniyappan N, Sabiah S, Kandasamy J. J. Org. Chem. 2019; 84: 11823
    • 3ab Li G, Szostak M. Chem. Eur. J. 2020; 26: 611
    • 3ac Li G, Szostak M. Org. Biomol. Chem. 2020; 18: 3827
    • 4a Ni S, Zhang W, Mei H, Han J, Pan Y. Org. Lett. 2017; 19: 2536
    • 4b Zhuo J, Zhang Y, Li Z, Li C. ACS Catal. 2020; 10: 3895
    • 4c Yu CG, Matsuo Y. Org. Lett. 2020; 22: 950
    • 4d Idris MA, Lee S. Org. Lett. 2020; 22: 9190
    • 4e He Z, Yan C, Zhang M, Irfan M, Wang Z, Zeng Z. Synthesis 2022; 54: 705
    • 4f Liu X, Hsiao CC, Guo L, Rueping M. Org. Lett. 2018; 20: 2976
    • 4g Meng G, Szostak M. Org. Lett. 2018; 20: 6789
    • 4h Chen J, Xu M, Yu S, Xia Y, Lee S. Org. Lett. 2020; 22: 2287
    • 4i Liu Y, Meng G, Liu R, Szostak M. Chem. Commun. 2016; 52: 6841
    • 4j Liu Y, Liu R, Szostak M. Org. Biomol. Chem. 2017; 15: 1780
    • 4k Li J, Yao J, Chen L, Zou D, Walsh PJ, Liang G. Org. Chem. Front. 2021; 8: 6344
    • 4l Amani J, Alam R, Badir S, Molander GA. Org. Lett. 2017; 19: 2426
    • 4m Shi W, Zou G. Molecules 2018; 23: 2412
    • 4n Mahesh S, Tang KC, Raj M. Molecules 2018; 23: 2615
    • 4o Wang C, Huang L, Wang F, Zou G. Tetrahedron Lett. 2018; 59: 2299
    • 4p Kadam AA, Metz TL, Qian Y, Stanley LM. ACS Catal. 2019; 9: 5651
    • 4q Koeritz MT, Burgett RW, Kadam AA, Stanley LM. Org. Lett. 2020; 22: 5731
    • 4r Reina A, Krachko T, Onida K, Bouyssi D, Jeanneau E, Monteiro N, Amgoune A. ACS Catal. 2020; 10: 2189
    • 4s Kerackian T, Reina A, Bouyssi D, Monteiro N, Amgoune A. Org. Lett. 2020; 22: 2240
    • 4t Kerackian T, Bouyssi D, Pilet G, Medebielle M, Monteiro N, Vantourout JC, Amgoune A. ACS Catal. 2022; 12: 12315
    • 5a Cui M, Wu H, Jian J, Wang H, Liu C, Daniel S, Zeng Z. Chem. Commun. 2016; 52: 12076
    • 5b Karthik S, Gandhi T. Org. Lett. 2017; 19: 5486
    • 5c Li W, Zhang S, Feng X, Yu X, Yamamoto Y, Bao M. Org. Lett. 2021; 23: 2521
    • 5d Simmons BJ, Hoffmann M, Hwang J, Jackl MK, Garg NK. Org. Lett. 2017; 19: 1910
    • 5e Simmons BJ, Ramirez M, Garg NK. Org. Synth. 2019; 96: 436
    • 5f Boit TB, Mehta MM, Kim J, Baker EL, Garg NK. Angew. Chem. Int. Ed. 2021; 60: 2472
    • 5g Dander JE, Giroud M, Racine S, Darzi ER, Alvizo O, Entwistle D, Garg NK. Commun. Chem. 2019; 2: 82
    • 5h Knapp RR, Bulger AS, Garg NK. Org. Lett. 2020; 22: 2833
    • 5i Bulger AS, Witkowski DC, Garg NK. Org. Synth. 2022; 99: 305
    • 5j Rahman MM, Szostak M. Org. Lett. 2021; 23: 4818
    • 5k Idris MA, Song KH, Lee S. Adv. Synth. Catal. 2022; 364: 2449
    • 5l Medina JM, Moreno J, Racine S, Du S, Garg NK. Angew. Chem. Int. Ed. 2017; 56: 6567
    • 5m Walker JA, Vickerman KL, Humke JN, Stanley LM. J. Am. Chem. Soc. 2017; 139: 10228
    • 5n Luo Z, Wu H, Li Y, Chen Y, Nie J, Lu S, Zhu Y, Zeng Z. Adv. Synth. Catal. 2019; 361: 4117
    • 5o Azeez S, Sureshbabu P, Sabiah S, Kandasamy J. Org. Biomol. Chem. 2022; 20: 2048
    • 5p Liu LL, Chen P, Sun Y, Wu Y, Chen S, Zhu J, Zhao Y. J. Org. Chem. 2016; 81: 11686
    • 5q Chu CQ, Dang L. J. Org. Chem. 2018; 83: 5009
    • 5r Wang H, Zhang SQ, Hong X. Chem. Commun. 2019; 55: 11330
    • 6a Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. Nat. Commun. 2016; 7: 11554
    • 6b Meng G, Lei P, Szostak M. Org. Lett. 2017; 19: 2158
    • 6c Idris MA, Lee S. Org. Chem. Front. 2020; 7: 2737
    • 6d Liu Y, Shi S, Achtenhagen M, Liu R, Szostak M. Org. Lett. 2017; 19: 1614
    • 6e Liu Y, Achtenhagen M, Liu R, Szostak M. Org. Biomol. Chem. 2018; 16: 1322
    • 6f Rahman MM, Li G, Szostak M. J. Org. Chem. 2019; 84: 12091
    • 6g Li G, Szostak M. Nat. Commun. 2018; 9: 4165
    • 6h Li G, Ji CL, Hong X, Szostak M. J. Am. Chem. Soc. 2019; 141: 11161
    • 6i Zuo D, Wang Q, Liu L, Huang T, Szostak M, Chen T. Angew. Chem. Int. Ed. 2022; 61: e202202794
    • 6j Li G, Xing Y, Zhao H, Zhang J, Hong X, Szostak M. Angew. Chem. Int. Ed. 2022; 61: e202200144
    • 6k Zhang J, Zhao H, Li G, Zhu X, Shang L, He Y, Liu X, Ma Y, Szostak M. Org. Biomol. Chem. 2022; 20: 5981
    • 6l Li G, Szostak M. Chem. Rec. 2020; 20: 649
    • 6m Li G, Szostak M. Synthesis 2020; 52: 2579
    • 6n Guo W, Huang J, Wu H, Liu T, Luo Z, Jian J, Zeng Z. Org. Chem. Front. 2018; 5: 2950
    • 6o Zhang Y, Ye X, Liu S, Chen W, Majeed I, Liu T, Zhu Y, Zeng Z. Org. Biomol. Chem. 2021; 19: 8566
    • 6p Dander JE, Baker EL, Garg NK. Chem. Sci. 2017; 8: 6433
    • 6q Singh S, Popuri S, Junaid QM, Sabiah S, Kandasamy J. Org. Biomol. Chem. 2021; 19: 7134
    • 6r Sureshbabu P, Azeez S, Chaudhary P, Kandasamy J. Org. Biomol. Chem. 2019; 17: 845
    • 6s Sureshbabu P, Azeez S, Pattanaik K, Sabiah S, Kandasamy J. Asian J. Org. Chem. 2022; 11: e202200076
    • 6t Subramani M, Rajendran SK. Eur. J. Org. Chem. 2019; 3677
    • 6u Yang D, Shin T, Kim H, Lee S. Org. Biomol. Chem. 2020; 18: 6053
    • 6v Joseph D, Park MS, Lee S. Org. Biomol. Chem. 2021; 19: 6227
    • 7a Hie L, Baker EL, Anthony SM, Desrosiers JN, Senanayake C, Garg NK. Angew. Chem. Int. Ed. 2016; 55: 15129
    • 7b Bourne-Branchu Y, Gosmini C, Danoun G. Chem. Eur. J. 2017; 23: 10043
    • 7c Li G, Lei P, Szostak M. Org. Lett. 2018; 20: 5622
    • 7d Wu H, Guo W, Daniel S, Li Y, Liu C, Zeng Z. Chem. Eur. J. 2018; 24: 3444
    • 7e Wybon CC. D, Mensch C, Hollanders C, Gadais C, Herrebout WA, Ballet S, Maes BU. W. ACS Catal. 2018; 8: 203
    • 7f Ye D, Liu Z, Chen H, Sessler JL, Lei C. Org. Lett. 2019; 21: 6888
    • 7g Wang Q, Liu L, Dong J, Tian Z, Chen T. New J. Chem. 2019; 43: 9384
    • 7h Rahman MM, Li G, Szostak M. Synthesis 2020; 52: 1060
    • 7i Li Y, Wu H, Zeng Z. Eur. J. Org. Chem. 2019; 4357
    • 7j Liu Y, Mo X, Majeed I, Zhang M, Wang H, Zeng Z. Org. Biomol. Chem. 2022; 20: 1532
    • 7k Weires NA, Caspi DD, Garg NK. ACS Catal. 2017; 7: 4381
    • 7l Dander JE, Morrill LA, Nguyen MM, Chen S, Garg NK. J. Chem. Educ. 2019; 96: 776
    • 7m Nagae H, Hirai T, Kato D, Soma S, Akebi SY, Mashima K. Chem. Sci. 2019; 10: 2860
    • 8a Meng G, Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
    • 8b Liu C, Meng G, Szostak M. J. Org. Chem. 2016; 81: 12023
    • 8c Liu C, Szostak M. Org. Biomol. Chem. 2018; 16: 7998
    • 8d Ji CL, Hong X. J. Am. Chem. Soc. 2017; 139: 15522
    • 8e Tong WY, Ly TD, Zhao TT, Wu YB, Wang X. Chem. Commun. 2020; 56: 113
    • 8f Li R, Xu H, Zhao N, Jin X, Dang Y. J. Org. Chem. 2020; 85: 833
    • 8g Shi S, Meng G, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
    • 8h Zhou T, Ji CL, Hong X, Szostak M. Chem. Sci. 2019; 10: 9865
    • 8i Luo Z, Xiong L, Liu T, Zhang Y, Lu S, Chen Y, Guo W, Zhu Y, Zeng Z. J. Org. Chem. 2019; 84: 10559
    • 8j Srimontree W, Chatupheeraphat A, Liao HH, Rueping M. Org. Lett. 2017; 19: 3091
    • 8k Liu L, Zhou D, Liu M, Zhou Y, Chen T. Org. Lett. 2018; 20: 2741
    • 8l Chatupheeraphat A, Liao HH, Srimontree W, Guo L, Minenkov Y, Poater A, Cavallo L, Rueping M. J. Am. Chem. Soc. 2018; 140: 3724
    • 9a Meng G, Szostak M. Org. Lett. 2016; 18: 796
    • 9b Meng G, Szostak M. ACS Catal. 2017; 7: 7251
    • 9c Wu H, Liu T, Cui M, Li Y, Jian J, Wang H, Zeng Z. Org. Biomol. Chem. 2017; 15: 536
    • 9d Xiong L, Deng R, Liu T, Luo Z, Wang Z, Zhu XF, Wang H, Zeng Z. Adv. Synth. Catal. 2019; 361: 5383
    • 9e Dey A, Sasmal S, Seth K, Lahiri GK, Maiti D. ACS Catal. 2017; 7: 433
    • 9f Yue H, Guo L, Lee SC, Liu X, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 3972
    • 9g Mondal M, Bharali P. New J. Chem. 2017; 41: 13211
    • 9h Hu J, Wang M, Pu X, Shi Z. Nat. Commun. 2017; 8: 14993
    • 9i Shi S, Szostak M. Org. Lett. 2017; 19: 3095
    • 9j Chatupheeraphat A, Liao HH, Lee SC, Rueping M. Org. Lett. 2017; 19: 4255
    • 9k Long Y, Zheng Y, Xia Y, Qu L, Yang Y, Xiang H, Zhou X. ACS Catal. 2022; 12: 4688
    • 9l Zhou PX, Shi S, Wang J, Zhang Y, Li C, Ge C. Org. Chem. Front. 2019; 6: 1942
    • 10a Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
    • 10b Shi S, Szostak M. ACS Omega 2019; 4: 4901
    • 10c Bie F, Liu X, Shi Y, Cao H, Han Y, Szostak M, Liu C. J. Org. Chem. 2020; 85: 15676
    • 10d Liu C, Szostak M. Angew. Chem. Int. Ed. 2017; 56: 12718
    • 10e Liu X, Yue H, Jia J, Guo L, Rueping M. Chem. Eur. J. 2017; 23: 11771
    • 10f Lee SC, Guo L, Yue H, Liao HH, Rueping M. Synlett 2017; 28: 2594
    • 10g Lee SC, Liao HH, Chatupheeraphat A, Rueping M. Chem. Eur. J. 2018; 24: 3608
    • 10h Bie F, Liu X, Cao H, Shi Y, Zhou T, Szostak M, Liu C. Org. Lett. 2021; 23: 8098
    • 10i Yue H, Guo L, Liao HH, Cai Y, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4282

      For additional information, see:
    • 11a Long Y, Su Z, Zheng Y, He S, Zhong J, Xiang H, Zhou X. ACS Catal. 2020; 10: 3398
    • 11b Ito Y, Nakatani S, Shiraki R, Kodama T, Tobisu M. J. Am. Chem. Soc. 2022; 144: 662
    • 11c Zhang ZB, Ji CL, Yang C, Chen J, Hong X, Xia JB. Org. Lett. 2019; 21: 1226
    • 11d Gao P, Szostak M. Org. Lett. 2020; 22: 6010
    • 11e Zhang ZB, Yang Y, Yu ZX, Xia JB. ACS Catal. 2020; 10: 5419
    • 11f Min KH, Iqbal N, Cho EJ. Org. Lett. 2022; 24: 989
    • 11g Hollanders C, Renders E, Gadais C, Masullo D, Van Raemdonck L, Wybon CC. D, Martin C, Herrebout WA, Maes BU. W, Ballet S. ACS Catal. 2020; 10: 4280
    • 11h Lee GS, Won J, Choi S, Baik M.-H, Hong SH. Angew. Chem. Int. Ed. 2020; 59: 16933
    • 11i Sun W, Wang L, Hu Y, Wu X, Xia C, Liu C. Nat. Commun. 2020; 11: 3113
    • 11j Chen J, Joseph D, Xia Y, Lee S. J. Org. Chem. 2021; 86: 5943
    • 11k Joseph D, Lee S. Org. Lett. 2022; 24: 6186
    • 11l Xu Y, Wang B, Jiang J, Yu H, Fu Y. J. Org. Chem. 2019; 84: 9474
    • 11m Xie PP, Qin ZX, Zhang SQ, Hong X. ChemCatChem 2021; 13: 3536
    • 11n Tomasini M, Zhang J, Zhao H, Besalu E, Falivene L, Caporaso L, Szostak M, Poater A. Chem. Commun. 2022; 58: 9950