Radiologie up2date, Table of Contents Radiologie up2date 2023; 23(03): 187-191DOI: 10.1055/a-2038-0931 How I do it How I do it – Evaluation von Nierensteinen in der CT Robert Peter Reimer , Nils Große Hokamp Recommend Article Abstract Buy Article All articles of this category Full Text References Literatur 1 Reimer RP, Salem J, Merkt M. et al. Size and volume of kidney stones in computed tomography: Influence of acquisition techniques and image reconstruction parameters. Eur J Radiol 2020; 132: 109267 2 Chewcharat A, Curhan G. Trends in the prevalence of kidney stones in the United States from 2007 to 2016. Urolithiasis 2021; 49: 27-39 3 Khan SR, Pearle MS, Robertson WG. et al. Correction: Kidney stones. Nat Rev Dis Prim 2017; 3: 17001 4 Ferraro PM, Curhan GC, DʼAddessi A. et al. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature. J Nephrol 2017; 30: 227-233 5 EAU Guidelines. Edn. presented at the EAU Annual Congress Milan 2023. ISBN 978-94-92671-19-6. 6 Hokamp NG, Salem J, Hesse A. et al. Low-Dose Characterization of Kidney Stones Using Spectral Detector Computed Tomography: An Ex Vivo Study. Invest Radiol 2018; 53: 457-462 7 Chang D, Slebocki K, Khristenko E. et al. Low-dose computed tomography of urolithiasis in obese patients: a feasibility study to evaluate image reconstruction algorithms. Diabetes, Metab Syndr Obes Targets Ther 2019; 12: 439-445 8 Reimer RP, Klein K, Rinneburger M. et al. Manual kidney stone size measurements in computed tomography are most accurate using multiplanar image reformatations and bone window settings. Sci Rep 2021; 11: 1-7 9 Fontarensky M, Alfidja A, Perignon R. et al. Reduced radiation dose with model-based iterative reconstruction versus standard dose with adaptive statistical iterative reconstruction in abdominal CT for diagnosis of acute renal colic. Radiology 2015; 276: 156-166 10 Niehoff JH, Carmichae AF, Woeltjen MM. et al. Clinical Low Dose Photon Counting CT for the Detection of Urolithiasis: Evaluation of Image Quality and Radiation Dose. Tomography 2022; 8: 1666-1675 11 Pan X, Sidky EY, Vannier M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?. Inverse Probl 2010; 25: 1-50 12 Willemink MJ, De Jong PA, Leiner T. et al. Iterative reconstruction techniques for computed tomography Part 1: Technical principles. Eur Radiol 2013; 23: 1623-1631 13 Nestler T, Haneder S, Hokamp NG. Modern imaging techniques in urinary stone disease. Curr Opin Urol 2019; 29: 81-88 14 Tenant S, Pang CL, Dissanayake P. et al. Intra-patient comparison of reduced-dose model-based iterative reconstruction with standard-dose adaptive statistical iterative reconstruction in the CT diagnosis and follow-up of urolithiasis. Eur Radiol 2017; 27: 4163-4172 15 Mahalingam H, Lal A, Mandal AK. et al. Evaluation of low-dose dual energy computed tomography for in vivo assessment of renal/ureteric calculus composition. Korean J Urol 2015; 56: 587-593 16 Marcus RP, Fletcher JG, Ferrero A. et al. Detection and characterization of renal stones by using photon-counting-based CT. Radiology 2018; 289: 436-442 17 Hokamp NG, Maintz D, Shapira N. et al. Technical background of a novel detector-based approach to dual-energy computed tomography. Diagnostic Interv Radiol 2020; 26: 68-71 18 Ascenti G, Racchiusa S, Ielo I. et al. CT : A New Diagnostic Approach to Urinary Calculosis. AJR 2010; 195 (04) 953-958 19 Meissnitzer M, Meissnitzer T, Hruby S. et al. Comparison of prone vs. supine unenhanced CT imaging in patients with clinically suspected ureterolithiasis. Abdom Radiol 2017; 42: 569-576 20 Nadler RB, Stern JA, Kimm S. et al. Coronal imaging to assess urinary tract stone size. J Urol 2004; 172: 962-964 21 Eisner BH, Kambadakone A, Monga M. et al. Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study. J Urol 2009; 181: 1710-1715 22 Lidén M, Andersson T, Geijer H. Making renal stones change size – impact of CT image post processing and reader variability. Eur Radiol 2011; 2218-2225 23 Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 1998; 159: 673-675 24 Jendeberg J, Thunberg P, Popiolek M. et al. Single-energy CT predicts uric acid stones with accuracy comparable to dual-energy CT-prospective validation of a quantitative method. Eur Radiol 2021; 31: 5980-5989 25 Gallioli A, De Lorenzis E, Boeri L. et al. Clinical utility of computed tomography Hounsfield characterization for percutaneous nephrolithotomy: A cross-sectional study. BMC Urol 2017; 17: 1-7 26 McCollough CH, Leng S, Yu L. et al. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015; 276: 637-653 27 Morsbach F, Wurnig MC, Müller D. et al. Feasibility of single-source dual-energy computed tomography for urinary stone characterization and value of iterative reconstructions. Invest Radiol 2014; 49: 125-130 28 Hidas G, Eliahou R, Duvdevani M. et al. Determination of renal stone composition with dual-energy CT: In vivo analysis and comparison with x-ray diffraction. Radiology 2010; 257: 394-401 29 Pourvaziri A, Parakh A, Cao J. et al. Comparison of Four Dual-Energy CT Scanner Technologies for Determining Renal Stone Composition: A Phantom Approach. Radiology 2022; 304: 580-589 30 Pinto Dos Santos D, Hempel JM, Mildenberger P. et al. Structured Reporting in Clinical Routine. RoFo 2019; 191: 33-39