Synthesis 2023; 55(18): 2911-2925
DOI: 10.1055/a-2039-1728
short review
Special Issue Electrochemical Organic Synthesis

Recent Advances in Electrochemical Cascade Cyclization Reactions

Cai Zhang
a   Department of Safety Supervision and Management, Chongqing Vocational Institute of Safety Technology, Wanzhou District, Chongqing 404020, P. R. of China
,
Demao Chen
b   College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
,
Jie-Ping Wan
b   College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
c   International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. of China
,
Yunyun Liu
b   College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
c   International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. of China
› Author Affiliations
This study has been supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202104705), Human and Social Sciences Research Planning Project of Chongqing Municipal Education Commission in 2021 (21SKGH383).


Abstract

This review highlights recent progress in electrochemical cascade cyclization reactions for the synthesis of carbon rings and heterocycles, such as pyridines, quinolines, phenanthridines, cinnolines, 1,4-dihydroquinolines, oxindoles, imidazo[1,5-α]pyridines, imidazoles, etc. The works included herein are introduced in two major sections of heterocycle construction and carbocycle construction reactions, covering the works reported from 2012 to 2022.

1 Introduction

2 Electrochemical Cascade Cyclization for the Synthesis of Heterocycles

2.1 Synthesis of Pyridines, Quinolines, Phenanthridines, and Cinnolines

2.2 Synthesis of 1,4-Dihydroquinolines, Hexacyclic Sulfonamides, and Thiazines

2.3 Synthesis of Hydroisoquinolinones and Hydroquinolinones

2.4 Synthesis of Quinazolin-4(3H)-ones

2.5 Synthesis of 4H-3,1-Benzoxazines

2.6 Synthesis of Oxindoles

2.7 Synthesis of Indolines and Indoles

2.8 Synthesis of Imidazo[1,5-α]pyridines and Imidazoles

2.9 Synthesis of Imidazolones, Imidazolidinones, Oxazolones, and Oxazolidinones

2.10 Synthesis of Benzoxazoles, Oxazolines, and Isoxazolines

2.11 Synthesis of Furans and Dihydrofurans

2.12 Synthesis of Indolizines, Pyrazoles, and Triazolium Inner Salts

2.13 Synthesis of Sulfonated Benzothiophenes, Thiazoles, Dihydrothiazoles, and 1,3,4-Thiadiazoles

2.14 Synthesis of Lactones

3 Electrochemical Cascade Cyclization for the Construction of Carbocycles

3.1 Synthesis of Carbon Polycycles and Spiroindenes

3.2 Synthesis of Difluoroacyl (Hetero)arenes and Sulfonated Indenones

4 Conclusion



Publication History

Received: 20 December 2022

Accepted after revision: 20 February 2023

Accepted Manuscript online:
20 February 2023

Article published online:
23 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Bhaskaran RP, Babu BP. Adv. Synth. Catal. 2020; 362: 5219
    • 1b Martins GM, Shirinfar B, Hardwick T, Ahmed N. ChemElectroChem 2019; 6: 1300
    • 1c Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
    • 1d Schotten C, Nicholls TP, Bourne RA, Kapur N, Nguyen BN, Willans CE. Green Chem. 2020; 22: 3358
    • 1e Siu JC, Fu N, Lin S. Acc. Chem. Res. 2020; 53: 547
    • 1f Yamamoto K, Kuriyama M, Onomura O. Acc. Chem. Res. 2020; 53: 105
    • 2a Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
    • 2b Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 2c Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 3 Xuan J, Studer A. Chem. Soc. Rev. 2017; 46: 4329
  • 4 Tang MC, Zou Y, Watanabe K, Walsh CT, Tang Y. Chem. Rev. 2017; 117: 5226
  • 5 Ma K, Martin BS, Yin X, Dai M. Nat. Prod. Rep. 2019; 36: 174
    • 6a Chen P, Ji X, Tang S, Deng GJ, Huang H. New J. Chem. 2022; 46: 20103
    • 6b Wu H, Luo T, Wan J.-P, Jiang J, Liu Y. Eur. J. Org. Chem. 2022; 2022: e202200552
    • 7a Mei GJ, Bian CY, Li GH, Xu SL, Zheng WQ, Shi F. Org. Lett. 2017; 19: 3219
    • 7b Jiang W, Wan S, Su Y, Huo C. J. Org. Chem. 2019; 84: 8232
    • 7c Wang M, Shi L, Li Y, Liu Q, Pan L. J. Org. Chem. 2019; 84: 9603
    • 7d Han GU, Son JY, Park D, Eom H, Lee K, Noh HC, Lee K, Lee PH. Adv. Synth. Catal. 2020; 362: 4749
    • 7e Fu L, Xu W, Pu M, Wu Y.-D, Liu Y, Wan J.-P. Org. Lett. 2022; 24: 3003
    • 8a Jiang S, Ma H, Yang R, Song XR, Xiao Q. Org. Chem. Front. 2022; 9: 5643
    • 8b Liao J, Yang X, Ouyang L, Lai Y, Huang J, Luo R. Org. Chem. Front. 2021; 8: 1345
    • 8c Ardkhean R, Caputo DF. J, Morrow SM, Shi H, Xiong Y, Anderson EA. Chem. Soc. Rev. 2016; 45: 1557
    • 8d Chen K, Zhao B, Liu Y, Wan J.-P. J. Org. Chem. 2022; 87: 14957
    • 8e Guo Y, Liu Y, Wan J.-P. Chin. Chem. Lett. 2022; 33: 855
    • 8f Yuan Y, Zhang SY, Dong WH, Wu F, Xie XM, Zhang ZG. Adv. Synth. Catal. 2021; 363: 4216
    • 8g Xu Y, Sun J. Org. Lett. 2021; 23: 853
    • 8h Luo T, Wu H, Liao L.-h, Wan J.-P, Liu Y. J. Org. Chem. 2021; 86: 15785
  • 9 Elinson MN, Gorbunov SV, Vereshchagin AN, Nasybullin RF, Goloveshkin AS, Bushmarinov IS, Egorov MP. Tetrahedron 2014; 70: 8559
  • 10 Qian P, Jiang S, Fan H, Jiang S, Xu L, Liu J. J. Org. Chem. 2022; 87: 9242
    • 11a Michael JP. Nat. Prod. Rep. 2007; 24: 223
    • 11b Nainwal LM, Tasneem S, Akhtar W, Verma G, Khan MF, Parvez S, Shaquiquzzaman M, Akhter M, Alam MM. Eur. J. Med. Chem. 2019; 164: 121
    • 11c Dubost E, Dumas N, Fossey C, Magnelli R, Butt-Gueulle S, Balladonne C, Caignard DH, Dulin F, Santos JS, Millet P, Charnay Y, Rault S, Cailly T, Fabis F. J. Med. Chem. 2012; 55: 9693
    • 11d Nakanishi T, Suzuki M. J. Nat. Prod. 1998; 61: 1263
  • 12 Malviya BK. M, Singh K, Jaiswal PK, Karnatak M, Verma VP, Badsara SS, Sharma S. New J. Chem. 2021; 45: 6367
  • 13 Zhan Y, Dai C, Zhu Z, Liu P, Sun P. Chem. Asian J. 2022; 17: e202101388
    • 14a Zhang C. Adv. Synth. Catal. 2014; 356: 2895
    • 14b Chen D, Jiang J, Wan J.-P. Chin. J. Chem. 2022; 40: 2582
    • 14c Zou L, Li P, Wang B, Wang L. Green Chem. 2019; 21: 3362
    • 14d Li B, Fan D, Yang C, Xia W. Org. Biomol. Chem. 2016; 14: 5293
    • 14e Zeng CL, Wang H, Gao D, Zhang Z, Ji D, He W, Liu CK, Yang Z, Fang Z, Guo K. Org. Lett. 2022; 24: 3244
    • 14f Yu Q, Liu Y, Wan J.-P. Chin. Chem. Lett. 2021; 32: 3514
  • 15 Lin L, Liang Q, Kong X, Chen Q, Xu B. J. Org. Chem. 2020; 85: 15708
  • 16 You S, Ruan M, Lu C, Liu L, Weng Y, Yang G, Wang S, Alhumade H, Lei A, Gao M. Chem. Sci. 2022; 13: 2310
  • 17 Kong WJ, Shen Z, Finger LH, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 5551
  • 18 Ma Q, Li M, Chen Z, Ni SF, Wright JS, Wen LR, Zhang LB. Green Chem. 2022; 24: 4425
  • 19 Cai C, Lu Y, Yuan C, Fang Z, Yang X, Liu C, Guo K. ACS Sustainable Chem. Eng. 2021; 9: 16989
  • 20 Hou ZW, Mao ZY, Song J, Xu HC. ACS Catal. 2017; 7: 5810
  • 21 Li Z, Jiao L, Sun Y, He Z, Wei Z, Liao WW. Angew. Chem. Int. Ed. 2020; 59: 7266
  • 22 Halder A, Mahanty K, Maiti D, Sarkar SD. Chem. Asian J. 2021; 16: 3895
    • 23a Niu YN, Xia XF. Org. Biomol. Chem. 2022; 20: 7861
    • 23b Vernekar SK. V, Liu Z, Nagy E, Miller L, Kirby KA, Wilson DJ, Kankanala J, Sarafianos ST, Parniak MA, Wang Z. J. Med. Chem. 2015; 58: 651
    • 23c Kumbhar D, Chandam D, Patil R, Jadhav S, Patil D, Patravale A, Deshmukh M. J. Heterocycl. Chem. 2018; 55: 692
    • 23d Tangella Y, Manasa KL, Sathish M, Alarifi A, Kamal A. Asian J. Org. Chem. 2017; 6: 898
  • 24 Yuan Y, Zheng Y, Xu B, Liao J, Bu F, Wang S, Hu JG, Lei A. ACS Catal. 2020; 10: 6676
  • 25 Shen ZJ, Huang B, Ma N, Yao L, Yang C, Guo L, Xia W. Adv. Synth. Catal. 2021; 363: 1944
  • 26 Zhang Z, Zhang L, Cao Y, Li F, Bai G, Liu G, Yang Y, Mo F. Org. Lett. 2019; 21: 762
  • 27 Guo Y, Wang R, Song H, Liu Y, Wang Q. Chem. Commun. 2021; 57: 8284
  • 28 Maiti D, Mahanty K, Sarkar SD. Chem. Asian J. 2021; 16: 748
    • 29a Fang J, Zhou J. Org. Biomol. Chem. 2012; 10: 2389
    • 29b Kshirsagar UA. Org. Biomol. Chem. 2015; 13: 9336
    • 29c Li QY, Cheng SY, Tang HT, Pan YM. Green Chem. 2019; 21: 5517
    • 29d Bowman WR, Elsegood MR. J, Stein T, Weaver GW. Org. Biomol. Chem. 2007; 5: 103
    • 30a Chen X, Zhang X, Lu S, Sun P. RSC Adv. 2020; 10: 44382
    • 30b Yang Y, Zhu C, Zhang M, Huang S, Lin J, Pan X, Su W. Chem. Commun. 2016; 52: 12869
    • 30c Nguyen TT, Nguyen KX, Pham PH, Ly D, Nguyen DK, Nguyen KD, Nguyen TT, Phan NT. S. Org. Biomol. Chem. 2021; 19: 4726
    • 30d Sarma D, Majumdar B, Deori B, Jain S, Sarma TK. ACS Omega 2021; 6: 11902
  • 31 Cao L, Huo H, Zeng H, Yu Y, Lu D, Gong Y. Adv. Synth. Catal. 2018; 360: 4764
  • 32 Lin DZ, Lai YL, Huang JM. ChemElectroChem 2019; 6: 4188
  • 33 Hu Y, Hou H, Yu L, Zhou S, Wu X, Sun W, Ke F. RSC Adv. 2021; 11: 31650

    • Selected examples:
    • 34a Kesavan A, Anbarasan P. Chem. Commun. 2022; 58: 282
    • 34b Babu SS, Varma AA, Gopinath P. Chem. Commun. 2022; 58: 1990
    • 34c Chaitanya M, Anbarasan P. Org. Lett. 2018; 20: 1183
    • 34d Ma J, Wan Y, Hong C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Eur. J. Org. Chem. 2017; 2017: 3335
    • 34e Rajkumar S, Tang M, Yang X. Angew. Chem. Int. Ed. 2020; 59: 2333
  • 35 He TJ, Zhong WQ, Huang JM. Chem. Commun. 2020; 56: 2735
  • 36 Lu F, Xu J, Li H, Wang K, Ouyang D, Sun L, Huang M, Jiang J, Hu J, Alhumade H, Lu L, Lei A. Green Chem. 2021; 23: 7982
    • 37a Zhang C. Curr. Org. Chem. 2022; 26: 639
    • 37b Zhang C. Adv. Synth. Catal. 2017; 359: 372
    • 37c Huang X, Pham K, Yi W, Zhang X, Clamens C, Hyatt JH, Jasinsk JP, Tayvah U, Zhang W. Adv. Synth. Catal. 2015; 357: 3820
    • 37d Dalpozzo R, Bartolib G, Bencivennib G. Chem. Soc. Rev. 2012; 41: 7247
    • 37e Han JL, Chang CH. Chem. Commun. 2016; 52: 2322
    • 37f Zhang C. ARKIVOC 2014; (i): 453
    • 37g Zhang C, Liu Y. J. Heterocycl. Chem. 2022; 59: 809
  • 38 Wang H, Xie Y, Zhou Y, Cen N, Chen W. Chin. Chem. Lett. 2022; 33: 221
  • 39 Wang XY, Zhong YF, Mo ZY, Wu SH, Xu YL, Tang HT, Pan YM. Adv. Synth. Catal. 2021; 363: 208
  • 40 Liang S, Zeng CC, Luo XG, Ren FZ, Tian HY, Sun BG, Little RD. Green Chem. 2016; 18: 2222
  • 41 Meng X, Xu H, Liu R, Zheng Y, Huang S. Green Chem. 2022; 24: 4754
    • 42a Brockunier L, Stelmach J, Guo J, Spencer T, Rosauer K, Bansal A, Cai S.-J, Chen N, Cummings J, Huang L, Johnson T, Levesque S, Luo L, Maloney K, Metzger J, Mortko C, Ortega K, Pai LY, Pereira A, Salituro G, Shang J, Shepherd C, Xu SS, Yang Q, Cui J, Roy S, Parmee E, Raghavan S. Bioorg. Med. Chem. Lett. 2020; 30: 127574
    • 42b Kamal A, Ramakrishna G, Raju P, Rao AV. S, Viswanath A, Nayak VL, Ramakrishna S. Eur. J. Med. Chem. 2011; 46: 2427

      Selected examples:
    • 43a Albano S, Olivo G, Mandolini L, Massera C, Ugozzoli F, Stefano SD. J. Org. Chem. 2017; 82: 3820
    • 43b Mahajan S, Sawant SD. J. Org. Chem. 2022; 87: 11387
    • 43c Volpi G. Asian J. Org. Chem. 2022; 11: e202200171
    • 43d Zeng K, Ye J, Meng X, Dechert S, Simon M, Gong S, Mata RA, Zhang K. Chem. Eur. J. 2022; 28: e202200648
  • 44 Hou ZW, Mao ZY, Melcamu YY, Lu X, Xu HC. Angew. Chem. Int. Ed. 2018; 57: 1636
  • 45 Yan H, Mao ZY, Hou ZW, Song J, Xu HC. Beilstein J. Org. Chem. 2019; 15: 795
  • 46 Feng ML, Li SQ, He HZ, Xi LY, Chen SY, Yu XQ. Green Chem. 2019; 21: 1619
  • 47 Wang Q, Yao X, Xu XJ, Zhang S, Ren L. ACS Omega 2022; 7: 4305
  • 48 Qian P, Yan Z, Zhou Z, Hu K, Wang J, Li Z, Zha Z, Wang Z. J. Org. Chem. 2019; 84: 3148
  • 49 Yang Z, Zhang J, Hu L, Li A, Li L, Liu K, Yang T, Zhou C. J. Org. Chem. 2020; 85: 5952
  • 50 Zeng L, Li J, Gao J, Huang X, Wang W, Zheng X, Gu L, Li G, Zhang S, He Y. Green Chem. 2020; 22: 3416
  • 51 Zhou K, Xia S, Liu Y, Chen Z. Org. Biomol. Chem. 2022; 20: 7840
  • 52 Jacques P, Pascal C, Evelina C. Curr. Med. Chem. 2005; 12: 877

    • Selected examples:
    • 53a Aghapoor K, Mohsenzadeh F, Darabi HR, Sayahi H, Jalali MR. ChemistrySelect 2019; 4: 11093
    • 53b Sanad SM. H, Mekky AE. M. J. Heterocycl. Chem. 2020; 57: 3930
    • 53c Goulart TA. C, Recchi AM. S, Back DF, Zeni G. Org. Biomol. Chem. 2022; 20: 4773
  • 54 Xu F, Long H, Song J, Xu HC. Angew. Chem. Int. Ed. 2019; 58: 9017
  • 55 Long H, Song J, Xu HC. Org. Chem. Front. 2018; 5: 3129
  • 56 Yi X, Hu X. Angew. Chem. Int. Ed. 2019; 58: 4700
    • 57a Castellano S, Kuck D, Viviano M, Yoo J, Lopez-Vallejo F, Conti P, Tamborini L, Pinto A, Medina-Franco JL, Sbardella G. J. Med. Chem. 2011; 54: 7663
    • 57b Kaur K, Kumar V, Sharma AK, Gupta GK. Eur. J. Med. Chem. 2014; 77: 121
    • 57c Yoshida M, Onda Y, Masuda Y, Doi T. Biopolymers 2016; 106: 404
  • 58 Riobé F, Avarvari N. Coord. Chem. Rev. 2010; 254: 1523
  • 59 Huynh TN. T, Tankam T, Koguchi S, Rerkrachaneekorn T, Sukwattanasinitt M, Wacharasindhu S. Green Chem. 2021; 23: 5189
  • 60 Mallick S, Baidya M, Mahanty K, Maiti D, Sarkar SD. Adv. Synth. Catal. 2020; 362: 1046
  • 61 Gao W, Li B, Zong L, Yu L, Li X, Li Q, Zhang X, Zhang S, Xu K. Eur. J. Org. Chem. 2021; 2021: 2431

    • Selected examples:
    • 62a Walker JC. L, Werrel S, Donohoe TJ. Chem. Eur. J. 2019; 25: 13114
    • 62b Cai H, Thombal RS, Li X, Lee YR. Adv. Synth. Catal. 2019; 361: 4022
    • 62c Shi T, Teng S, Reddy AG. K, Guo X, Zhang Y, Moore KT, Buckley T, Mason DJ, Wang W, Chapman E, Hu W. Org. Biomol. Chem. 2019; 17: 8737
    • 62d An J, Intano J, Richard A, Kim T, Gascón JA, Howell AR. Chem. Sci. 2021; 12: 10347
    • 62e Zhou JL, Wang LJ, Xu H, Sun XL, Tang Y. ACS Catal. 2013; 3: 685
  • 63 Li H, Lu F, Xu J, Hu J, Alhumade H, Lu L, Lei A. Org. Chem. Front. 2022; 9: 2786
  • 64 Katayama A, Senboku H, Hara S. Tetrahedron 2016; 72: 4626
  • 65 Maiti D, Halder A, Pillai AS, Sarkar SD. J. Org. Chem. 2021; 86: 16084
  • 66 Guan Z, Wang Y, Wang H, Huang Y, Wang S, Tang H, Zhang H, Lei A. Green Chem. 2019; 21: 4976

    • Selected examples:
    • 67a Zhang C. J. Chin. Chem. Soc. 2022; 69: 594
    • 67b Hui J, Ma Y, Zhao J, Cao H. Org. Biomol. Chem. 2021; 19: 10245
    • 67c Sadowski B, Klajn J, Gryko DT. Org. Biomol. Chem. 2016; 14: 7804
    • 67d Feng Y, He J, Wei Y, Xie J, Liu P. Eur. J. Org. Chem. 2022; 2022: e202200357
  • 68 Malviya BK, Jassal AK, Karnatak M, Verma VP, Sharma S. J. Org. Chem. 2022; 87: 2898
  • 69 Feng J, Wang Y, Gao L, Yu Y, Baell JB, Huang F. J. Org. Chem. 2022; 87: 13138
  • 70 Li Y, Huang Z, Mo G, Jiang W, Zheng C, Feng P, Ruan Z. Chin. J. Chem. 2021; 39: 942
  • 71 Zhang D, Cai J, Du J, Wang X, He W, Yang Z, Liu C, Fang Z, Guo K. J. Org. Chem. 2021; 86: 2593
  • 72 Zhang MM, Sun Y, Wang WW, Chen KK, Yang WC, Wang L. Org. Biomol. Chem. 2021; 19: 3844
  • 73 Guo H, Liu Y, Wen C, Wan JP. Green Chem. 2022; 24: 5058
  • 74 Ma Z, Hu X, Li Y, Liang D, Dong Y, Wang B, Li W. Org. Chem. Front. 2021; 8: 2208
  • 75 Yang J, Li G, Yu K, Xu B, Chen Q. J. Org. Chem. 2022; 87: 1208
  • 76 Zhang J, Das B, Verho O, Bäckvall JE. Angew. Chem. Int. Ed. 2022; 61: e202212131
  • 77 Maji B. Adv. Synth. Catal. 2019; 361: 3453
  • 78 Matsumoto K, Shimao H, Fujiki Y, Kawashita N, Kashimura S. Electrochemistry 2020; 88: 262
  • 79 Zuo HD, Hao WJ, Zhu CF, Guo C, Tu SJ, Jiang B. Org. Lett. 2020; 22: 4471
  • 80 Adouama C, Keyrouz R, Pilet G, Monnereau C, Gueyrard D, Noël T, Médebielle M. Chem. Commun. 2017; 53: 5653
  • 81 Wen J, Shi W, Zhang F, Liu D, Tang S, Wang H, Lin XM, Lei A. Org. Lett. 2017; 19: 3131