neuroreha 2023; 15(02): 83-86
DOI: 10.1055/a-2039-8705
Aus der Praxis

Ausdauertraining nach Schlaganfall

Jan Mehrholz

In welcher Hinsicht könnte ein Ausdauertraining grundsätzlich sinnvoll sein? Der vorliegende Artikel orientiert sich an dieser Frage, liefert Argumente und Lösungsansätze.



Publication History

Article published online:
14 June 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Ahmed HM, Al-Mallah MH, McEvoy JW. et al. Maximal exercise testing variables and 10-year survival: Fitness risk score derivation from the FIT project. Mayo Clinic Proceedings 2015; 90: 346-355
  • 2 Myers J, Prakash M, Froelicher V. et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 2002; 346: 793-801
  • 3 Ainsworth BE, Haskell WL, Herrmann SD. et al. 2011 compendium of physical activities: A second update of codes and MET values. Med Sci Sports Exerc 2011; 43: 1575-1581
  • 4 Arem H, Moore SC, Patel A. et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Internal Medicine 2015; 175: 959-967
  • 5 Li Y, Pan A, Wang DD. et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 2018; 138: 345-355
  • 6 Kokkinos PF, Faselis C, Myers J. et al. Cardiorespiratory fitness and incidence of major adverse cardiovascular events in US veterans: A cohort study. Mayo Clin Proc 2017; 92: 39-48
  • 7 James SN, Chiou Y-J, Fatih N. et al. Timing of physical activity across adulthood on later-life cognition: 30 years follow-up in the 1946 British birth cohort. Journal of Neurology, Neurosurgery & Psychiatry 2023;
  • 8 Erickson KI, Voss MW, Prakash RS. et al. Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences 2011; 108: 3017-3022
  • 9 Liguori G, Feito Y, Fountaine C. et al. ACSM’s guidelines for exercise testing and prescription. 11th ed. American College of Sports Medicine. Wolters Kluwer; 2022
  • 10 Ploughman M, Kelly LP. Four birds with one stone? Reparative, neuroplastic, cardiorespiratory, and metabolic benefits of aerobic exercise poststroke. Curr Opin Neurol 2016; 29: 684-692
  • 11 Suzuki T, Shimada H, Makizako H. et al. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PloS one 2013; 8: e61483
  • 12 Freudenberger P, Petrovic K, Sen A. et al. Fitness and cognition in the elderly: The Austrian Stroke Prevention Study. Neurology 2016; 86: 418-424
  • 13 Wang SS, Wang JJ, Wang PX. et al. Determinants of fatigue after first-ever ischemic stroke during acute phase. PloS one 2014; 9: e110037
  • 14 Smith AC, Saunders DH, Mead G. Cardiorespiratory fitness after stroke: A systematic review. International Journal of Stroke 2012; 7: 499-510
  • 15 Kramer S, Johnson L, Bernhardt J. et al. Energy expenditure and cost during walking after stroke: A systematic review. Archives of Physical Medicine and Rehabilitation 2016; 97: 619-632.e611
  • 16 Billinger SA, Mattlage AE, Ashenden AL. et al. Aerobic exercise in subacute stroke improves cardiovascular health and physical performance. J Neurol Phys Ther 2012; 36: 159-165
  • 17 Sivaramakrishnan A, Subramanian SK. A systematic review on the effects of acute aerobic exercise on neurophysiological, molecular, and behavioral measures in chronic stroke. Neurorehabil Neural Repair 2023; 15459683221146996. DOI: 10.1177/15459683221146996
  • 18 Dohle C, Tholen R, Wittenberg H. et al. S2e-Leitlinie: Rehabilitation der Mobilität nach Schlaganfall (ReMoS). Neurol Rehabil 2015; 21: 355-494
  • 19 Saunders DH, Sanderson M, Hayes S. et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev 2020; 3: CD003316
  • 20 Voss MW, Weng TB, Narayana-Kumanan K. et al. Acute exercise effects predict training change in cognition and connectivity. Med Sci Sports Exerc 2020; 52: 131-140
  • 21 Stoykov ME, Madhavan S. Motor priming in neurorehabilitation. Journal of Neurologic Physical Therapy 2015; 39: 33-42
  • 22 Huang T, Larsen KT, Ried-Larsen M. et al. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand J Med Sci Sports 2014; 24: 1-10
  • 23 Schwarz AJ, Brasel JA, Hintz RL. et al. Acute effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. The Journal of Clinical Endocrinology and Metabolism 1996; 81: 3492-3497
  • 24 Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation (New York, NY: 1994) 2014; 21: 301-314
  • 25 Mang CS, Campbell KL, Ross CJ. et al. Promoting neuroplasticity for motor rehabilitation after stroke: Considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Physical therapy 2013; 93: 1707-1716
  • 26 Mang CS, Snow NJ, Campbell KL. et al. A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning. Journal of Applied Physiology (Bethesda, Md: 1985) 2014; 117: 1325-1336
  • 27 Andrews SC, Curtin D, Hawi Z. et al. Intensity matters: High-intensity interval exercise enhances motor cortex plasticity more than moderate exercise. Cerebral Cortex (New York, NY: 1991) 2020; 30: 101-112
  • 28 Wanner P, Cheng FH, Steib S. Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis. Neuroscience & Biobehavioral Reviews 2020; 116: 365-381
  • 29 Boyne P, Meyrose C, Westover J. et al. Exercise intensity affects acute neurotrophic and neurophysiological responses poststroke. Journal of Applied Physiology (Bethesda, Md: 1985) 2019; 126: 431-443
  • 30 Dantas JL, Doria C, Rossi H. et al. Determination of blood lactate training zone boundaries with rating of perceived exertion in runners. Journal of Strength and Conditioning Research 2015; 29: 315-320
  • 31 Tholen R, Dettmers C, Henze T. et al. Bewegungstherapie zur Verbesserung der Mobilität von Patienten mit Multipler Sklerose: Konsensusfassung für die S2e-Leitlinie der DGNR in Zusammenarbeit mit Physio Deutschland – Deutscher Verband für Physiotherapie (ZVK) e. V.. Neurologie & Rehabilitation 2019; 25: 3-40
  • 32 Rooney S, Wood L, Moffat F. et al. Is fatigue associated with aerobic capacity and muscle strength in people with multiple sclerosis: A systematic review and meta-analysis. Archives of Physical Medicine and Rehabilitation
  • 33 Heine M, van de Port I, Rietberg MB. et al. Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev 2015; CD009956
  • 34 Langeskov-Christensen M, Heine M, Kwakkel G. et al. Aerobic capacity in persons with multiple sclerosis: A systematic review and meta-analysis. Sports Med 2015; 45: 905-923
  • 35 Zimmer P, Bloch W, Schenk A. et al. High-intensity interval exercise improves cognitive performance and reduces matrix metalloproteinases-2 serum levels in persons with multiple sclerosis: A randomized controlled trial. Mult Scler 2018; 24: 1635-1644
  • 36 Amatya B, Khan F, Galea M. Rehabilitation for people with multiple sclerosis: An overview of Cochrane Reviews. Cochrane Database Syst Rev 2019; 1: CD012732