Klin Monbl Augenheilkd 2024; 241(05): 666-674
DOI: 10.1055/a-2043-4662
Übersicht/Review

Idiopathic Epiretinal Membranes – Pathophysiology, Classifications and OCT-Biomarkers

Artikel in mehreren Sprachen: deutsch | English
Verena Anna Englmaier
Klinik für Augenheilkunde, Universitätsklinikum Münster, Deutschland
,
Jens Julian Storp
Klinik für Augenheilkunde, Universitätsklinikum Münster, Deutschland
,
Sebastian Dierse
Klinik für Augenheilkunde, Universitätsklinikum Münster, Deutschland
,
Nicole Eter
Klinik für Augenheilkunde, Universitätsklinikum Münster, Deutschland
,
Sami Al-Nawaiseh
Klinik für Augenheilkunde, Universitätsklinikum Münster, Deutschland
› Institutsangaben

Abstract

Epiretinal membranes (ERMs) are a common finding in patients with increasing age. Diagnosis and treatment of ERMs have changed dramatically in recent years due to technological advances in ophthalmological care. In recent years, tomographic imaging has allowed for accurate visualization of ERMs and contributed to the growing understanding of the pathophysiology of this condition. The literature review conducted here summarizes recent innovations in diagnosis, classification, and treatment of idiopathic ERMs and specifically addresses novel optical coherence tomography (OCT) biomarkers that allow for the generation of prognoses regarding the clinical postoperative outcome.



Publikationsverlauf

Eingereicht: 18. Januar 2023

Angenommen: 20. Februar 2023

Accepted Manuscript online:
27. Februar 2023

Artikel online veröffentlicht:
19. Juni 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 da Silva RA, Roda VMP, Matsuda M. et al. Cellular components of the idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 2022; 260: 1435-1444
  • 2 Meuer SM, Myers CE, Klein BE. et al. The epidemiology of vitreoretinal interface abnormalities as detected by spectral-domain optical coherence tomography: the beaver dam eye study. Ophthalmology 2015; 122: 787-795
  • 3 Chua PY, Sandinha MT, Steel DH. Idiopathic epiretinal membrane: progression and timing of surgery. Eye (Lond) 2022; 36: 495-503
  • 4 Govetto A, Virgili G, Rodriguez FJ. et al. Functional and Anatomical Significance of the Ectopic Inner Foveal Layers in Eyes with Idiopathic Epiretinal Membranes: Surgical Results at 12 Months. Retina 2019; 39: 347-357
  • 5 Klein R, Klein BE, Wang Q. et al. The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc 1994; 92: 403-425
  • 6 Mitchell P, Smith W, Chey T. et al. Prevalence and associations of epiretinal membranes. The Blue Mountains Eye Study, Australia. Ophthalmology 1997; 104: 1033-1040
  • 7 Quinn NB, Steel DH, Chakravarthy U. et al. Assessment of the Vitreomacular Interface Using High-Resolution OCT in a Population-Based Cohort Study of Older Adults. Ophthalmol Retina 2020; 4: 801-813
  • 8 Ng CH, Cheung N, Wang JJ. et al. Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology 2011; 118: 694-699
  • 9 Xiao W, Chen X, Yan W. et al. Prevalence and risk factors of epiretinal membranes: a systematic review and meta-analysis of population-based studies. BMJ Open 2017; 7: e014644
  • 10 Gupta P, Yee KM, Garcia P. et al. Vitreoschisis in macular diseases. Br J Ophthalmol 2011; 95: 376-380
  • 11 Bu SC, Kuijer R, Li XR. et al. Idiopathic epiretinal membrane. Retina 2014; 34: 2317-2335
  • 12 Schumann RG, Gandorfer A, Ziada J. et al. Hyalocytes in idiopathic epiretinal membranes: a correlative light and electron microscopic study. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1887-1894
  • 13 Kinoshita T, Kovacs KD, Wagley S. et al. Morphologic differences in epiretinal membranes on ocular coherence tomography as a predictive factor for surgical outcome. Retina 2011; 31: 1692-1698
  • 14 Zhu XF, Peng JJ, Zou HD. et al. Prevalence and risk factors of idiopathic epiretinal membranes in Beixinjing blocks, Shanghai, China. PLoS One 2012; 7: e51445
  • 15 Byon IS, Pak GY, Kwon HJ. et al. Natural History of Idiopathic Epiretinal Membrane in Eyes with Good Vision Assessed by Spectral-Domain Optical Coherence Tomography. Ophthalmologica 2015; 234: 91-100
  • 16 Tanikawa A, Shimada Y, Horiguchi M. Comparison of visual acuity, metamorphopsia, and aniseikonia in patients with an idiopathic epiretinal membrane. Jpn J Ophthalmol 2018; 62: 280-285
  • 17 Lee GW, Lee SE, Han SH. et al. Characteristics of secondary epiretinal membrane due to peripheral break. Sci Rep 2020; 10: 20881
  • 18 Scheerlinck LM, van der Valk R, van Leeuwen R. Predictive factors for postoperative visual acuity in idiopathic epiretinal membrane: a systematic review. Acta Ophthalmol 2015; 93: 203-212
  • 19 Hubschman JP, Govetto A, Spaide RF. et al. Optical coherence tomography-based consensus definition for lamellar macular hole. Br J Ophthalmol 2020; 104: 1741-1747
  • 20 Govetto A, Lalane 3rd RA, Sarraf D. et al. Insights into Epiretinal Membranes: Presence of Ectopic Inner Foveal Layers and a New Optical Coherence Tomography Staging Scheme. Am J Ophthalmol 2017; 175: 99-113
  • 21 Ortoli M, Blanco-Garavito R, Blautain B. et al. Prognostic factors of idiopathic epiretinal membrane surgery and evolution of alterations of the central cone bouquet. Graefes Arch Clin Exp Ophthalmol 2021; 259: 2139-2147
  • 22 Jackson TL, Donachie PH, Williamson TH. et al. THE Royal College of Ophthalmologistsʼ National Ophthalmology Database Study of Vitreoretinal Surgery: Report 4, Epiretinal Membrane. Retina 2015; 35: 1615-1621
  • 23 Yusuf AM, Bizrah M, Bunce C. et al. Surgery for idiopathic epiretinal membrane. Cochrane Database Syst Rev 2021; (03) CD013297
  • 24 Bouwens MD, Van Meurs JC. Sine Amsler Charts: a new method for the follow-up of metamorphopsia in patients undergoing macular pucker surgery. Graefes Arch Clin Exp Ophthalmol 2003; 241: 89-93
  • 25 Lee SM, Pak KY, Kwon HJ. et al. Association between Tangential Contraction and Early Vision Loss in Idiopathic Epiretinal Membrane. Retina 2018; 38: 541-549
  • 26 Kim JH, Kim YM, Chung EJ. et al. Structural and functional predictors of visual outcome of epiretinal membrane surgery. Am J Ophthalmol 2012; 153: 103-110.e1
  • 27 Miguel AI, Legris A. Prognostic factors of epiretinal membranes: A systematic review. J Fr Ophtalmol 2017; 40: 61-79
  • 28 Shiono A, Kogo J, Klose G. et al. Photoreceptor outer segment length: a prognostic factor for idiopathic epiretinal membrane surgery. Ophthalmology 2013; 120: 788-794
  • 29 Shimozono M, Oishi A, Hata M. et al. The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery. Am J Ophthalmol 2012; 153: 698-704 704.e1
  • 30 Itoh Y, Inoue M, Rii T. et al. Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery. Invest Ophthalmol Vis Sci 2013; 54: 7302-7308
  • 31 Park YG, Hong SY, Roh YJ. Novel Optical Coherence Tomography Parameters as Prognostic Factors for Stage 3 Epiretinal Membranes. J Ophthalmol 2020; 2020: 9861086
  • 32 Inoue M, Morita S, Watanabe Y. et al. Preoperative inner segment/outer segment junction in spectral-domain optical coherence tomography as a prognostic factor in epiretinal membrane surgery. Retina 2011; 31: 1366-1372
  • 33 Fernandes TF, Sousa K, Azevedo I. et al. Baseline visual acuity and interdigitation zone as predictors in idiopathic epiretinal membranes: A retrospective cohort study. Eur J Ophthalmol 2021; 31: 1291-1298
  • 34 Jeon S, Jung B, Lee WK. Long-Term Prognostic Factors for Visual Improvement after Epiretinal Membrane Removal. Retina 2019; 39: 1786-1793
  • 35 Ozdek S, Ozdemir Zeydanli E, Karabas L. et al. Relation of anatomy with function following the surgical treatment of idiopathic epiretinal membrane: a multicenter retrospective study. Graefes Arch Clin Exp Ophthalmol 2021; 259: 891-904
  • 36 Zeyer JC, Parker P, Dajani O. et al. Preoperative Domed Macular Contour Correlates with Postoperative Visual Gain after Vitrectomy for Symptomatic Epiretinal Membrane. Retina 2021; 41: 505-509
  • 37 Michalewski J, Michalewska Z, Cisiecki S. et al. Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT). Graefes Arch Clin Exp Ophthalmol 2007; 245: 1623-1631
  • 38 Gonzalez-Saldivar G, Berger A, Wong D. et al. Ectopic Inner Foveal Layer Classification Scheme Predicts Visual Outcomes after Epiretinal Membrane Surgery. Retina 2020; 40: 710-717
  • 39 Zur D, Iglicki M, Feldinger L. et al. Disorganization of Retinal Inner Layers as a Biomarker for Idiopathic Epiretinal Membrane After Macular Surgery-The DREAM Study. Am J Ophthalmol 2018; 196: 129-135
  • 40 Kim JH, Kang SW, Kong MG. et al. Assessment of retinal layers and visual rehabilitation after epiretinal membrane removal. Graefes Arch Clin Exp Ophthalmol 2013; 251: 1055-1064
  • 41 Zou J, Tan W, Huang W. et al. Association between individual retinal layer thickness and visual acuity in patients with epiretinal membrane: a pilot study. PeerJ 2020; 8: e9481
  • 42 Kinoshita T, Imaizumi H, Miyamoto H. et al. Two-year results of metamorphopsia, visual acuity, and optical coherence tomographic parameters after epiretinal membrane surgery. Graefes Arch Clin Exp Ophthalmol 2016; 254: 1041-1049
  • 43 Hashimoto Y, Saito W, Saito M. et al. Retinal outer layer thickness increases after vitrectomy for epiretinal membrane, and visual improvement positively correlates with photoreceptor outer segment length. Graefes Arch Clin Exp Ophthalmol 2014; 252: 219-226
  • 44 Govetto A, Bhavsar KV, Virgili G. et al. Tractional Abnormalities of the Central Foveal Bouquet in Epiretinal Membranes: Clinical Spectrum and Pathophysiological Perspectives. Am J Ophthalmol 2017; 184: 167-180
  • 45 Brinkmann MP, Michels S, Brinkmann C. et al. Epiretinal membrane surgery outcome in eyes with abnormalities of the central bouquet. Int J Retina Vitreous 2021; 7: 7
  • 46 Nam KY, Kim JY. Effect of internal limiting membrane peeling on the development of epiretinal membrane after pars plana vitrectomy for primary rhegmatogenous retinal detachment. Retina 2015; 35: 880-885
  • 47 Aras C, Arici C, Akar S. et al. Peeling of internal limiting membrane during vitrectomy for complicated retinal detachment prevents epimacular membrane formation. Graefes Arch Clin Exp Ophthalmol 2009; 247: 619-623
  • 48 Forlini M, Date P, Ferrari LM. et al. Comparative Analysis of Retinal Reattachment Surgery with or without Internal Limiting Membrane Peeling to Prevent Postoperative Macular Pucker. Retina 2018; 38: 1770-1776
  • 49 Guillaubey A, Malvitte L, Lafontaine PO. et al. Incidence of retinal detachment after macular surgery: a retrospective study of 634 cases. Br J Ophthalmol 2007; 91: 1327-1330
  • 50 Chen JK, Khurana RN, Nguyen QD. et al. The incidence of endophthalmitis following transconjunctival sutureless 25- vs. 20-gauge vitrectomy. Eye (Lond) 2009; 23: 780-784