Osteologie 2023; 32(02): 97-103
DOI: 10.1055/a-2045-7222
Leitlinie

Messtechnische Verfahren im Kontext der DVO Leitlinie – neue Entwicklungen

Technical Methods in the Context of the DVO Guideline – New Developments
Klaus Engelke
1   Department of Medicine 3, FAU, Erlangen, Germany
,
Dirk Müller
2   Department of Radiology, Kantonsspital Graubunden, Chur, Switzerland
,
Bjoern Bühring
3   Bergisches Rheuma-Zentrum, Krankenhaus St. Josef, Wuppertal, Germany
,
Friederike Thomasius
4   Frankfurt Center for Bone Health and Endocrinology, Frankfurt, Germany
› Institutsangaben

Zusammenfassung

Die Osteodensitometrie, die Bestimmung von Knochendichte und biochemischer Knochenumbauparameter sind ein integraler Bestandteil der DVO Leitlinie. Dieser Beitrag gibt einen Überblick über neue Studien und neue technische Entwicklungen soweit sie insbesondere im Kontext der Leitlinie, also für Diagnose, Bestimmung des Frakturrisikos und Verlaufskontrolle relevant sind. Dabei stehen zunächst die Verfahren im Vordergrund, die unmittelbar zur Anpassung von Empfehlungen geführt haben. Andere Techniken wie das sogenannte „opportunistic screening“ von Routine CT Aufnahmen haben zwar noch keinen Eingang in die Leitlinie gefunden, allerdings scheint aufgrund ihres Potentials, die Identifikation von Patienten mit hohem Frakturrisiko wesentlich zu verbessern, ein Überblick auch über diese Methoden im Rahmen dieses Beitrages gerechtfertigt.

Abstract

Osteodensitometry, the determination of bone density and biochemical bone remodeling parameters are an integral part of the DVO guideline. This article gives an overview of new studies and new technical developments as far as they are relevant especially in the context of the guideline, i. e. for diagnosis, determination of fracture risk and follow-up. The focus is in particular on those techniques that have directly led to the adaptation of recommendations. Other techniques, such as opportunistic screening of routine CT scans, have not yet found their way into the guideline, but their potential to significantly improve the identification of patients at high risk of fracture seems to justify an overview of these methods in the context of this article.



Publikationsverlauf

Eingereicht: 14. Februar 2023

Angenommen: 28. Februar 2023

Artikel online veröffentlicht:
25. Mai 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Shuhart CR, Yeap SS, Anderson PA. et al. Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. J Clin Densitom 2019; 22: 453-471 DOI: 10.1016/j.jocd.2019.07.001.
  • 2 Bilezikian JP, Khan AA, Potts JT. et al. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J Clin Endocrinol Metab 2009; 94: 335-339 DOI: 10.1210/jc.2008-1763.
  • 3 Bouxsein ML, Eastell R, Lui LY. et al. Change in Bone Density and Reduction in Fracture Risk: A Meta-Regression of Published Trials. J Bone Miner Res 2019; 34: 632-642 DOI: 10.1002/jbmr.3641.
  • 4 Gluer CC. Monitoring skeletal changes by radiological techniques. J Bone Miner Res 1999; 14: 1952-1962 DOI: 10.1359/jbmr.1999.14.11.1952.
  • 5 Leslie WD, Morin SN, Martineau P. et al. Association of Bone Density Monitoring in Routine Clinical Practice With Anti-Osteoporosis Medication Use and Incident Fractures: A Matched Cohort Study. J Bone Miner Res 2019; 34: 1808-1814 DOI: 10.1002/jbmr.3813.
  • 6 Chapurlat RD, Duboeuf F, Marion-Audibert HO. et al. Effectiveness of instant vertebral assessment to detect prevalent vertebral fracture. Osteoporos Int 2006; 17: 1189-1195 DOI: 10.1007/s00198-006-0121-2.
  • 7 Domiciano DS, Figueiredo CP, Lopes JB. et al. Vertebral fracture assessment by dual X-ray absorptiometry: a valid tool to detect vertebral fractures in community-dwelling older adults in a population-based survey. Arthritis care & research 2013; 65: 809-815 DOI: 10.1002/acr.21905.
  • 8 Lewiecki EM, Laster AJ. Clinical review: Clinical applications of vertebral fracture assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab 2006; 91: 4215-4222 DOI: 10.1210/jc.2006-1178.
  • 9 Yang J, Mao Y, Nieves JW. Identification of prevalent vertebral fractures using Vertebral Fracture Assessment (VFA) in asymptomatic postmenopausal women: A systematic review and meta-analysis. Bone 2020; 136: 115358 DOI: 10.1016/j.bone.2020.115358.
  • 10 Kanis JA, Cooper C, Rizzoli R. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2019; 30: 3-44 DOI: 10.1007/s00198-018-4704-5.
  • 11 Cosman F, de Beur SJ, LeBoff MS. et al. Clinician's Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int 2014; 25: 2359-2381 DOI: 10.1007/s00198-014-2794-2.
  • 12 Leslie WD, Lix LM, Binkley N. Targeted vertebral fracture assessment for optimizing fracture prevention in Canada. Archives of osteoporosis 2020; 15: 65 DOI: 10.1007/s11657-020-00735-2.
  • 13 Diacinti D, Guglielmi G, Pisani D. et al. Vertebral morphometry by dual-energy X-ray absorptiometry (DXA) for osteoporotic vertebral fractures assessment (VFA). La Radiologia medica 2012; 117: 1374-1385 DOI: 10.1007/s11547-012-0835-5.
  • 14 Fuerst T, Wu C, Genant HK. et al. Evaluation of vertebral fracture assessment by dual X-ray absorptiometry in a multicenter setting. Osteoporos Int 2009; 20: 1199-1205 DOI: 10.1007/s00198-008-0806-9.
  • 15 Lee JH, Lee YK, Oh SH. et al. A systematic review of diagnostic accuracy of vertebral fracture assessment (VFA) in postmenopausal women and elderly men. Osteoporos Int 2016; 27: 1691-1699 DOI: 10.1007/s00198-015-3436-z.
  • 16 Mostert JM, Romeijn SR, Dibbets-Schneider P. et al. Inter-observer agreement of vertebral fracture assessment with dual-energy x-ray absorptiometry equipment. Archives of osteoporosis 2021; 17: 4 DOI: 10.1007/s11657-021-01046-w.
  • 17 Bazzocchi A, Spinnato P, Fuzzi F. et al. Vertebral fracture assessment by new dual-energy X-ray absorptiometry. Bone 2012; 50: 836-841 DOI: 10.1016/j.bone.2012.01.018.
  • 18 Bouxsein ML, Delmas PD. Vertebral fracture assessment using standard bone densitometry equipment predicts incident fractures in women. Nature clinical practice Endocrinology & metabolism 2008; 4: 652-653 DOI: 10.1038/ncpendmet0984.
  • 19 McCloskey EV, Vasireddy S, Threlkeld J. et al. Vertebral fracture assessment (VFA) with a densitometer predicts future fractures in elderly women unselected for osteoporosis. J Bone Miner Res 2008; 23: 1561-1568
  • 20 Schousboe JT, Lix LM, Morin SN. et al. Prevalent vertebral fracture on bone density lateral spine (VFA) images in routine clinical practice predict incident fractures. Bone 2019; 121: 72-79 DOI: 10.1016/j.bone.2019.01.009.
  • 21 Johansson L, Johansson H, Axelsson KF. et al. Improved fracture risk prediction by adding VFA-identified vertebral fracture data to BMD by DXA and clinical risk factors used in FRAX. Osteoporos Int 2022; 33: 1725-1738 DOI: 10.1007/s00198-022-06387-x.
  • 22 Samelson EJ, Broe KE, Xu H. et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 2019; 7: 34-43 DOI: 10.1016/S2213-8587(18)30308-5.
  • 23 Cheung WH, Hung VW, Cheuk KY. et al Best Performance Parameters of HR-pQCT to Predict Fragility Fracture: Systematic Review and Meta-Analysis. J Bone Miner Res 2021; DOI: 10.1002/jbmr.4449. 10.1002/jbmr.4449
  • 24 Mikolajewicz N, Bishop N, Burghardt AJ. et al. HR-pQCT Measures of Bone Microarchitecture Predict Fracture: Systematic Review and Meta-Analysis. J Bone Miner Res 2020; 35: 446-459 DOI: 10.1002/jbmr.3901.
  • 25 van den Bergh JP, Szulc P, Cheung AM. et al. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 2021; 32: 1465-1485 DOI: 10.1007/s00198-021-05999-z.
  • 26 Whittier DE, Boyd SK, Burghardt AJ. et al. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2020; 31: 1607-1627 DOI: 10.1007/s00198-020-05438-5.
  • 27 Engelke K, Chaudry O, Bartenschlager S. Opportunistic Screening Techniques for Analysis of CT Scans. Curr Osteoporos Rep 2022; DOI: 10.1007/s11914-022-00764-5. 10.1007/s11914-022-00764-5
  • 28 Chettrit D, Meir T, Lebel H. et al. 3D convolutional sequence to sequence model for vertebral compression fractures identification in CT. In, International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2020: 743-752
  • 29 Hempe H, Yilmaz EB, Meyer C. et al. Opportunistic CT screening for degenerative deformities and osteoporotic fractures with 3D DeepLab. In, Medical Imaging 2022: Image Processing. SPIE; 2022: 127-134
  • 30 Loffler MT, Jacob A, Scharr A. et al. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur Radiol 2021; 31: 6069-6077 DOI: 10.1007/s00330-020-07655-2.
  • 31 Yilmaz EB, Buerger C, Fricke T. et al. Automated deep learning-based detection of osteoporotic fractures in CT images. In, International Workshop on Machine Learning in Medical Imaging. Springer; 2021: 376-385
  • 32 Gudmundsdottir H, Jonsdottir B, Kristinsson S. et al. Vertebral bone density in Icelandic women using quantitative computed tomography without an external reference phantom. Osteoporos Int 1993; 3: 84-89 DOI: 10.1007/BF01623378.
  • 33 Lee DC, Hoffmann PF, Kopperdahl DL. et al. Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision. Bone 2017; 103: 325-333 DOI: 10.1016/j.bone.2017.07.029.
  • 34 Michalski AS, Besler BA, Michalak GJ. et al. CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans. Med Eng Phys 2020; 78: 55-63 DOI: 10.1016/j.medengphy.2020.01.009.
  • 35 Mueller DK, Kutscherenko A, Bartel H. et al. Phantom-less QCT BMD system as screening tool for osteoporosis without additional radiation. Eur J Radiol 2011; 79: 375-381 DOI: 10.1016/j.ejrad.2010.02.008.
  • 36 Bartenschlager S, Dankerl P, Chaudry O. et al. BMD accuracy errors specific to phantomless calibration of CT scans of the lumbar spine. Bone 2022; 157: 116304 DOI: 10.1016/j.bone.2021.116304.
  • 37 Rebello D, Anjelly D, Grand DJ. et al Opportunistic screening for bone disease using abdominal CT scans obtained for other reasons in newly diagnosed IBD patients. Osteoporos Int 2018; DOI: 10.1007/s00198-018-4444-6. 10.1007/s00198-018-4444-6
  • 38 Park SH, Jeong YM, Lee HY. et al. Opportunistic use of chest CT for screening osteoporosis and predicting the risk of incidental fracture in breast cancer patients: A retrospective longitudinal study. PloS one 2020; 15: e0240084 DOI: 10.1371/journal.pone.0240084.
  • 39 Jang S, Graffy PM, Ziemlewicz TJ. et al. Opportunistic Osteoporosis Screening at Routine Abdominal and Thoracic CT: Normative L1 Trabecular Attenuation Values in More than 20 000 Adults. Radiology 2019; 291: 360-367 DOI: 10.1148/radiol.2019181648.
  • 40 Pickhardt PJ, Pooler BD, Lauder T. et al. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 2013; 158: 588-595 DOI: 10.7326/0003-4819-158-8-201304160-00003.
  • 41 Flohr T, Petersilka M, Henning A. et al. Photon-counting CT review. Phys Med 2020; 79: 126-136 DOI: 10.1016/j.ejmp.2020.10.030.
  • 42 Hsieh SS, Leng S, Rajendran K. et al. Photon Counting CT: Clinical Applications and Future Developments. IEEE Trans Radiat Plasma Med Sci 2021; 5: 441-452 DOI: 10.1109/trpms.2020.3020212.
  • 43 Sartoretti T, Wildberger JE, Flohr T. et al Photon-Counting detector CT: Early clinical experience review. Br J Radiol 2023; DOI: 10.1259/bjr.20220544: 20220544. 10.1259/bjr.20220544
  • 44 Pena JA, Klein L, Maier J. et al. Dose-efficient assessment of trabecular microstructure using ultra-high-resolution photon-counting CT. Z Med Phys 2022; 32: 403-416 DOI: 10.1016/j.zemedi.2022.04.001.
  • 45 Bauer DC, Black DM, Bouxsein ML. et al. Treatment-Related Changes in Bone Turnover and Fracture Risk Reduction in Clinical Trials of Anti-Resorptive Drugs: A Meta-Regression. J Bone Miner Res 2018; 33: 634-642 DOI: 10.1002/jbmr.3355.
  • 46 Elbers LPB, Raterman HG, Lems WF. Bone Mineral Density Loss and Fracture Risk After Discontinuation of Anti-osteoporotic Drug Treatment: A Narrative Review. Drugs 2021; 81: 1645-1655 DOI: 10.1007/s40265-021-01587-x.
  • 47 Shrimpton PC, Wall BF, Jones DG. et al. Doses to patients from routine diagnostic X-ray examinations in England. Br J Radiol 1986; 59: 749-758 DOI: 10.1259/0007-1285-59-704-749.
  • 48 Schegerer A, Loose R, Heuser LJ. et al. Diagnostic Reference Levels for Diagnostic and Interventional X-Ray Procedures in Germany: Update and Handling. Rofo 2019; 191: 739-751 DOI: 10.1055/a-0824-7603.
  • 49 Blake GM, Rea JA, Fogelman I. Vertebral morphometry studies using dual-energy x-ray absorptiometry. Semin Nucl Med 1997; 27: 276-290
  • 50 Ferrar L, Eastell R. Identification of vertebral deformities in men: comparison of morphometric radiography and morphometric X-ray absorptiometry. Osteoporos Int 1999; 10: 167-174
  • 51 Vokes T, Bachman D, Baim S. et al. Vertebral fracture assessment: the 2005 ISCD Official Positions. J Clin Densitom 2006; 9: 37-46 DOI: 10.1016/j.jocd.2006.05.006.
  • 52 Blake GM, Naeem M, Boutros M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone 2006; 38: 935-942 DOI: 10.1016/j.bone.2005.11.007.
  • 53 Patel R, Blake GM, Batchelor S. et al. Occupational dose to the radiographer in dual X-ray absorptiometry: a comparison of pencil-beam and fan-beam systems. Br J Radiol 1996; 69: 539-543 DOI: 10.1259/0007-1285-69-822-539.
  • 54 Engelke K, Adams JE, Armbrecht G. et al. Clinical Use of Quantitative Computed Tomography and Peripheral Quantitative Computed Tomography in the Management of Osteoporosis in Adults: The 2007 ISCD Official Positions. J Clin Densitom 2008; 11: 123-162
  • 55 Engelke K, Lang T, Khosla S. et al. Clinical Use of Quantitative Computed Tomography (QCT) of the Hip in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part I. J Clin Densitom 2015; 18: 338-358 DOI: 10.1016/j.jocd.2015.06.012.