Rofo 2023; 195(10): 905-912
DOI: 10.1055/a-2049-9369
Pediatric Radiology

Impact of probe-induced abdominal compression on two-dimensional shear wave elastography measurement of split liver transplants in children

Der Einfluss der schallkopfinduzierten abdominellen Kompression auf die 2-dimensionale Scherwellen-Elastografie in Kindern mit Split-Leber-Transplantaten
Michael Groth
1   Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Section of Pediatric Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
2   Hepatobiliary Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Uta Herden
2   Hepatobiliary Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Florian Brinkert
3   Pediatric Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Jan Beime
3   Pediatric Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Philipp Deindl
4   Department of Neonatology and Pediatric Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Gerhard Adam
5   Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Jochen Herrmann
1   Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Section of Pediatric Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
› Author Affiliations

Abstract

Purpose To evaluate the effect of probe-induced abdominal compression of split liver transplants (SLT) in children on 2D-shear wave elastography (SWE) values.

Materials and Methods Data from 11 children (4.7 ± 4.8 years) who had undergone SLT and SWE were evaluated retrospectively. Elastograms were obtained with probes placed in an epigastric, midline position on the abdominal wall, with no and slight compression, using convex and linear transducers. For each identically positioned probe and condition, 12 serial elastograms were obtained and the SLT diameter was measured. Liver stiffness and degree of SLT compression were compared.

Results Slight probe pressure resulted in SLT compression, with a shorter distance between the cutis and the posterior margin of the liver transplant than in the measurement with no pressure (curved array, 5.0 ± 1.1 vs. 5.9 ± 1.3 cm, mean compression 15 %± 8 %; linear array, 4.7 ± 0.9 vs. 5.3 ± 1.0 cm, mean compression 12 %± 8 %; both p < 0.0001). The median liver stiffness was significantly greater with slight pressure than with no pressure (curved transducer, 13.38 ± 3.0 vs. 7.02 ± 1.7 kPa, p < 0.0001; linear transducer, 18.53 ± 7.1 vs. 9.03 ± 1.5 kPa, p = 0.0003).

Conclusion Slight abdominal compression can significantly increase SWE values in children with left-lateral SLT. To obtain meaningful results and reduce operator dependency in free-hand examinations, probe pressure must be controlled carefully.

Key points:

  • Probe-induced compression can increase elastography values in split liver transplants in children

  • In free-hand examination, probe pressure must be controlled carefully

  • Pressure loading can be determined indirectly by the anteroposterior transplant diameter

Citation Format

  • Groth M, Fischer L, Herden U et al. Impact of probe-induced abdominal compression on two-dimensional shear wave elastography measurement of split liver transplants in children. Fortschr Röntgenstr 2023; 195: 905 – 912

Zusammenfassung

Ziel Evaluation des Effektes der Kompression durch die Ultraschallsonde bei der 2D-Scherwellen-Elastografie (SWE) auf die Elastografiewerte bei Split-Leber-Transplantaten (SLT) in Kindern.

Material und Methoden 11 SWE-Untersuchungen von Kindern (4.7 ± 4.8 Jahre) nach SLT wurden retrospektiv ausgewertet. Elastogramme wurden mit der Konvex- und Linearsonde in einer mittig epigastrischen Position mit nahezu keiner und wenig Kompression angefertigt. Es wurden jeweils 12 Elastogramme erfasst. SLT-Diameter wurden bestimmt. Leber-Steifigkeit und SLT-Kompression wurden verglichen.

Ergebnisse Wenig Sondendruck resultierte, verglichen mit nahezu keinem Druck, in einer SLT-Kompression mit kürzerer Entfernung zwischen Kutis und SLT-Hinterrand (Konvex: 5.0 ± 1.1 vs. 5.9 ± 1.3 cm, mittlere Kompression 15 % ± 8 %; Linear: 4.7 ± 0.9 vs. 5.3 ± 1.0 cm, mittlere Kompression: 12 % ± 8 %; beide p < 0.0001). Die mediane Leber-Steifigkeit war mit leichter Kompression signifikant höher als nahezu ohne (Konvex: 13.38 ± 3.0 vs. 7.02 ± 1.7 kPa, p < 0.0001; Linear: 18.53 ± 7.1 vs. 9.03 ± 1.5 kPa, p = 0.0003).

Schlussfolgerung In Kindern nach SLT kann leichte Kompression SWE-Werte signifikant erhöhen. Um aussagekräftige Ergebnisse zu erhalten und zur Reduzierung der Auswerterabhängigkeit sollte der Sondendruck kontrolliert werden.

Kernaussagen:

  • Ultraschallsondendruck kann Elastografiewerte bei Kindern mit Split-Leber-Transplantaten erhöhen

  • Der ausgeübte Sondendruck muss beim Untersuchen aufmerksam kontrolliert werden

  • Ultraschallsondendruck kann indirekt über den anteroposterioren Transplantatdiameter bestimmt werden



Publication History

Received: 02 July 2022

Accepted: 26 February 2023

Article published online:
03 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dietrich CF, Bamber J, Berzigotti A. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall in Med 2017; 38: e16-e47
  • 2 Bende F, Mulabecirovic A, Sporea I. et al. Assessing Liver Stiffness by 2-D Shear Wave Elastography in a Healthy Cohort. Ultrasound Med Biol 2018; 44: 332-341
  • 3 Mjelle AB, Mulabecirovic A, Havre RF. et al. Normal Liver Stiffness Values in Children: A Comparison of Three Different Elastography Methods. J Pediatr Gastroenterol Nutr 2019; 68: 706-712
  • 4 Bayramov N, Yilmaz S, Salahova S. et al. Liver Graft and Spleen Elastography After Living Liver Transplantation: Our First Results. Transplant Proc 2019; 51: 2446-2450
  • 5 Navin PJ, Olson MC, Knudsen JM. et al. Elastography in the evaluation of liver allograft. Abdom Radiol (NY) 2020; 43: 1546-1515
  • 6 Deurdulian C, Grant EG, Tchelepi H. et al. Assessment of Fibrosis in Liver Transplant Recipients: Diagnostic Performance of Shear Wave Elastography (SWE) and Correlation of SWE Findings With Biopsy Results. Am J Roentgenol 2019; 213: W264-W271
  • 7 Yoon JH, Lee JY, Woo HS. et al. Shear wave elastography in the evaluation of rejection or recurrent hepatitis after liver transplantation. Eur Radiol 2013; 23: 1729-1737
  • 8 Nacif LS, de Cassia Gomes C, Paranaguá-Vezozzo D. et al. Liver Elastography in Acute Cellular Rejection After Liver Transplantation. Transplant Proc 2020;
  • 9 Li J-W, Lu Q, Luo Y. Hepatic Venous Outflow Stenosis After Auxiliary Left Hemiliver Transplantation Diagnosed by Ultrasonic Shear Wave Elastography Combined With Doppler Ultrasonography. Ultrasound Q 2017; 33: 289-292
  • 10 Wang HK, Lai Y-C, Tseng H-S. et al. Hepatic venous congestion after living donor liver transplantation: quantitative assessment of liver stiffness using shear wave elastography--a case report. Transplant Proc 2012; 44: 814-816
  • 11 Kennedy P, Wagner M, Castera L. et al. Quantitative Elastography Methods in Liver Disease: Current Evidence and Future Directions. Radiology 2018; 286: 738-763
  • 12 Belei O, Sporea I, Gradinaru-Tascau O. et al. Comparison of three ultrasound based elastographic techniques in children and adolescents with chronic diffuse liver diseases. Med Ultrason 2016; 18: 145-150
  • 13 Franchi-Abella S, Corno L, Gonzales E. et al. Feasibility and Diagnostic Accuracy of Supersonic Shear-Wave Elastography for the Assessment of Liver Stiffness and Liver Fibrosis in Children: A Pilot Study of 96 Patients. Radiology 2016; 278: 554-562
  • 14 Kim JR, Suh CH, Yoon HM. et al. The diagnostic performance of shear-wave elastography for liver fibrosis in children and adolescents: A systematic review and diagnostic meta-analysis. Eur Radiol 2018; 28: 1175-1186
  • 15 Kot BCW, Zhang ZJ, Lee AWC. et al. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS ONE 2012; 7: e44348
  • 16 Vachutka J, Sedlackova Z, Furst T. et al. Evaluation of the Effect of Tissue Compression on the Results of Shear Wave Elastography Measurements. Ultrason Imaging 2018; 40: 380-393
  • 17 Barr RG, Zhang Z. Effects of precompression on elasticity imaging of the breast: development of a clinically useful semiquantitative method of precompression assessment. J Ultrasound Med 2012; 31: 895-902
  • 18 Syversveen T, Midtvedt K, Berstad AE. et al. Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients. Eur Radiol 2012; 22: 2130-2137
  • 19 Vachutka J, Sedlackova Z, Furst T. et al. Evaluation of the Effect of Tissue Compression on the Results of Shear Wave Elastography Measurements. Ultrason Imaging 2018; 40: 380-393
  • 20 Shiina T, Nightingale KR, Palmeri ML. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 2015; 41: 1126-1147
  • 21 Herrmann J, Petit P, Grabhorn E. et al. Liver cirrhosis in children – the role of imaging in the diagnostic pathway. Pediatr Radiol 2022;
  • 22 Byenfeldt M, Elvin A, Fransson P. Influence of Probe Pressure on Ultrasound-Based Shear Wave Elastography of the Liver Using Comb-Push 2-D Technology. Ultrasound Med Biol 2019; 45: 411-428
  • 23 Porra L, Swan H, Ho C. The effect of applied transducer force on acoustic radiation force impulse quantification within the left lobe of the liver. Australas J Ultrasound Med 2015; 18: 100-106
  • 24 Fitzpatrick E, Quaglia A, Vimalesvaran S. et al. Transient elastography is a useful noninvasive tool for the evaluation of fibrosis in paediatric chronic liver disease. J Pediatr Gastroenterol Nutr 2013; 56: 72-76
  • 25 Shiina T, Nightingale KR, Palmeri ML. et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 2015; 41: 1126-1147
  • 26 Bell MAL, Kumar S, Kuo L. et al. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control. IEEE Trans Biomed Eng 2016; 63: 1517-1524
  • 27 Jung C, Groth M, Petersen KU. et al. Hepatic shear wave elastography in children under free-breathing and breath-hold conditions. Eur Radiol 2017; 27: 5337-5343