Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(14): 2159-2165
DOI: 10.1055/a-2050-6508
DOI: 10.1055/a-2050-6508
paper
Direct 2-Pyridyl-Alkylation of Benzyne with N-Alkylpyridinium Salts
We thank the National Natural Science Foundation of China (NSFC; 21602229), the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, and the State Key Laboratory for Oxo Synthesis and Selective Oxidation for generous financial support.
Abstract
A 2-pyridyl-alkylation of benzyne using N-alkylpyridinium salts has been developed under either photochemical or thermal conditions. This metal-free dicarbofunctionalization of benzyne undergoes a de Mayo-type process including cascade dearomative [3+2] cycloaddition and rearomative ring-opening reaction. An electron-deficient N-cyclic alkyl group was necessary. A formal ortho-C–H arylation of pyridine has been achieved.
Key words
benzyne - N-alkylpyridinium salts - dicarbofunctionalization - visible light - C–H arylation - de Mayo-type reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2050-6508.
- Supporting Information
Publication History
Received: 18 January 2023
Accepted after revision: 08 March 2023
Accepted Manuscript online:
08 March 2023
Article published online:
13 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Stoermer R, Kahlert B. Ber. Dtsch. Chem. Ges. 1902; 35: 1633
- 1b Bachmann WE, Clarke HT. J. Am. Chem. Soc. 1927; 49: 2089
- 1c Wittig G. Naturwissenschaften 1942; 30: 696
- 1d Roberts JD, Simmons HE, Carlsmith LA, Vaughan CW. J. Am. Chem. Soc. 1953; 75: 3290
- 2a Shi JR, Li LG, Li Y. Chem. Rev. 2021; 121: 3892
- 2b García-López J.-A, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
- 2c Tadross PM, Stoltz BM. A. Chem. Rev. 2012; 112: 3550
- 3a Jayanth TT, Jeganmohan M, Cheng C.-H. Org. Lett. 2005; 7: 2921
- 3b Jayanth TT, Cheng CH. Angew. Chem. Int. Ed. 2007; 46: 5921
- 4a Seo E.-K, Huang L, Wall ME, Wani MC, Navarro H, Mukherjee R, Farnsworth NR, Kinghorn AD. J. Nat. Prod. 1999; 62: 1484
- 4b Takoka S, Nakade K, Fukuyama Y. Tetrahedron Lett. 2002; 43: 6919
- 5 He J, Jia Z, Tan H, Luo X, Qiu D, Shi J, Xu H, Li Y. Angew. Chem. Int. Ed. 2019; 58: 18513
- 6a Piers E. Pure Appl. Chem. 1988; 60: 107
- 6b Huang H.-M, Bellotti P, Ma JJ, Dalton T, Glorius F. Nat. Rev. Chem. 2021; 5: 301
- 7a Hu R.-B, Sun S, Su Y. Angew. Chem. Int. Ed. 2017; 56: 10877
- 7b Chen SJ, Chen GS, Deng T, Li J.-H, He Z.-Q, Liu L.-S, Ren H, Liu Y.-L. Org. Lett. 2022; 24: 702
- 9 Tambar UK, Stoltz BM. J. Am. Chem. Soc. 2005; 127: 5340
- 10a Yoshida H, Watanabe M, Morishita T, Ohshita J, Kunai A. Chem. Commun. 2007; 1505
- 10b Samineni R, Bandi CR. C, Srihari P, Mehta G. Org. Lett. 2016; 18: 6184
- 10c Kranthikumar R, Chegondi R, Chandrasekhar S. J. Org. Chem. 2016; 81: 2451
- 11a Rao UN, Sathunuru R, Maguire JA, Biehl E. J. Heterocycl. Chem. 2004; 41: 13
- 11b Raminelli C, Liu Z, Larock RC. J. Org. Chem. 2006; 71: 4689
- 11c Shaibu BS, Kawade RK, Liu R.-S. Org. Biomol. Chem. 2012; 10: 6834
- 11d Lv C, Wan C, Liu S, Lan Y, Li Y. Org. Lett. 2018; 20: 1919
- 12a de Mayo P, Takeshita H, Sattar AB. M. A. Proc. Chem. Soc. 1962; 119
- 12b de Mayo P, Takeshita H. Can. J. Chem. 1963; 41: 440
- 12c Martinez-Haya R, Marzo L, König B. Chem. Commun. 2018; 54: 11602
- 12d Salaverri N, Mas-Ballesté R, Marzo L, Alemán J. Commun. Chem. 2020; 3: 132
- 13a Chen Z, Zeng H, Girard SA, Wang F, Chen N, Li C.-J. Angew. Chem. Int. Ed. 2015; 54: 14487
- 13b Qiu Z, Zeng H, Li C.-J. Acc. Chem. Res. 2020; 53: 2395
- 14a Dega-Szafran Z, Schroeder G, Szafran M. J. Phys. Org. Chem. 1999; 12: 39
- 14b Dega-Szafran Z, Schroeder G, Szafran M, Szwajca A, Łęska B, Lewandowska M. J. Mol. Struct. 2000; 555: 31
- 14c Szafran M, Szwajca A, Łeska B, Schroeder G, Dega-Szafran Z. J. Mol. Struct. 2002; 643: 55
- 14d Szwajca A, Łeska B, Schroeder G, Szafran M. J. Mol. Struct. 2004; 708: 87
- 15 Generation of arynes from o-trimethylsilylphenyl triflate: Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 12: 1211
- 16 Deprotonation of the dearomatized carbon in the intermediate I might lead to fragmentation, which could provide the desired product.
- 17 Construction of spiro tetrahydroindolizine by [3+2] cycloadditon of N-alkylpyridinium salts and alkenes: He X.-L, Wang C, Wen Y.-W, Zhao Y.-B, Yang H, Qian S, Yang L, Wang Z. Org. Chem. Front. 2021; 8: 5847
- 18 Shao PC, Yu TY, Lu H, Xu P.-F, Wei H. CCS Chem. 2021; 3: 1862
C–H arylation of pyridine using arynes:
The de Mayo cascade includes [2+2] photocycloaddition/ring strain-driven ring opening:
Dearomatization-rearomatization strategy:
Generation of pyridinium ylides: