Planta Med 2023; 89(09): 916-934
DOI: 10.1055/a-2053-0950
Pharmacokinetic Investigations
Original Papers

Metabolic Alterations in Streptozotocin–nicotinamide-induced Diabetic Rats Treated with Muntingia calabura Extract via 1H-NMR-based Metabolomics

Nur Khaleeda Zulaikha Zolkeflee
1   Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
,
Pei Lou Wong
2   Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
,
M. Maulidiani
3   Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
,
Nurul Shazini Ramli
2   Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
,
Azrina Azlan
4   Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
,
1   Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
2   Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
› Author Affiliations
Supported by: Universiti Putra Malaysia UPM/700/2/1/GPB/2017/9597400

Abstract

Diabetes mellitus (DM) is a metabolic endocrine disorder caused by decreased insulin concentration or poor insulin response. Muntingia calabura (MC) has been used traditionally to reduce blood glucose levels. This study aims to support the traditional claim of MC as a functional food and blood-glucose-lowering regimen. The antidiabetic potential of MC is tested on a streptozotocin–nicotinamide (STZ-NA)-induced diabetic rat model by using the 1H-NMR-based metabolomic approach. Serum biochemical analyses reveal that treatment with 250 mg/kg body weight (bw) standardized freeze-dried (FD) 50% ethanolic MC extract (MCE 250) shows favorable serum creatinine (37.77 ± 3.53 µM), urea (5.98 ± 0.84 mM) and glucose (7.36 ± 0.57 mM) lowering capacity, which was comparable to the standard drug, metformin. The clear separation between diabetic control (DC) and normal group in principal component analysis indicates the successful induction of diabetes in the STZ-NA-induced type 2 diabetic rat model. A total of nine biomarkers, including allantoin, glucose, methylnicotinamide, lactate, hippurate, creatine, dimethylamine, citrate and pyruvate are identified in ratsʼ urinary profile, discriminating DC and normal groups through orthogonal partial least squares-discriminant analysis. Induction of diabetes by STZ-NA is due to alteration in the tricarboxylic acid (TCA) cycle, gluconeogenesis pathway, pyruvate metabolism and nicotinate and nicotinamide metabolism. Oral treatment with MCE 250 in STZ-NA-induced diabetic rats shows improvement in the altered carbohydrate metabolism, cofactor and vitamin metabolic pathway, as well as purine and homocysteine metabolism.

Supporting Information



Publication History

Received: 03 July 2022

Accepted after revision: 12 March 2023

Accepted Manuscript online:
13 March 2023

Article published online:
15 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Moini J. Pathophysiology of Diabetes. In: Epidemiology of Diabetes. Oxford: Elsevier; 2019: 25-43
  • 2 Chandran A, Abdullah MN, Abdul F. National Diabetes Registry Report 2013 – 2019. Putrajaya: Ministry of Health; 2019
  • 3 Zheng J, Woo SL, Hu X, Botchlett R, Chen L, Huo Y, Wu C. Metformin and metabolic diseases: A focus on hepatic aspects. Front Med 2015; 9: 173-186
  • 4 Zhang X, Yang S, Chen J, Su Z. Unraveling the regulation of hepatic gluconeogenesis. Front Endocrinol (Lausanne) 2019; 9: 1-17
  • 5 Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med 2012; 237: 481-490
  • 6 Abdalbasit AM. Wild fruits: Composition, nutritional value and products. 1st edition. Cham: Springer; 2019: 549-562
  • 7 Balan T, Sani MHM, Mumtaz-Ahmad SH, Suppaiah V, Mohtarrudin N, Zakaria ZA. Antioxidant and anti-inflammatory activities contribute to the prophylactic effect of semi-purified fractions obtained from the crude methanol extract of Muntingia calabura leaves against gastric ulceration in rats. J Ethnopharmacol 2015; 164: 1-15
  • 8 Sufian AS, Ramasamy K, Ahmat N, Zakaria ZA, Yusof MIM. Isolation and identification of antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L. J Ethnopharmacol 2013; 146: 198-204
  • 9 Zakaria ZA, Nor Hazalin NAM, Zaid SNHM, Ghani MA, Hassan MH, Gopalan HK, Sulaiman MR. Antinociceptive, anti-inflammatory and antipyretic effects of Muntingia calabura aqueous extract in animal models. J Nat Med 2007; 61: 443-448
  • 10 Aligita W, Susilawati E, Sukmawati IK, Holidayanti L, Riswanti J. Antidiabetic activities of Muntingia calabura L. leaves water extract in type 2 diabetes mellitus animal models. Indones Biomed J 2018; 10: 165-170
  • 11 Chen JJ, Lin RW, Du CY, Huang HY, Chen IS. Flavones and cytotoxic constituents from the stem bark of Muntingia calabura . J Chinese Chem Soc 2004; 51: 665-670
  • 12 Zolkeflee NKZ, Ramli NS, Azlan A, Abas F. In vitro anti-diabetic activities and UHPLC-ESI-MS/MS profile of Muntingia calabura leaves extract. Molecules 2022; 27: 1-21
  • 13 Ma X, Chen Z, Wang L, Wang G, Wang Z, Dong XB, Wen B, Zhang Z. The pathogenesis of diabetes mellitus by oxidative stress and inflammation: Its inhibition by berberine. Front Pharmacol 2018; 9: 782
  • 14 Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29: 1181-1189
  • 15 Pari L, Saravanan R. Beneficial effect of succinic acid monoethyl ester on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-nicotinamide induced type 2 diabetes. Chem Biol Interact 2007; 169: 15-24
  • 16 Tang D, Liu L, Ajiakber D, Ye J, Xu J, Xin X, Aisa HA. Anti-diabetic effect of Punica granatum flower polyphenols extract in type 2 diabetic rats: Activation of Akt/GSK-3β and inhibition of IRE1α-XBP1 pathways. Front Endocrinol (Lausanne) 2018; 9: 1-11
  • 17 Nagy C, Einwallner E. Study of in vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). J Vis Exp 2018; 2018: 1-12
  • 18 Maulidiani. Abas F, Khatib A, Perumal V, Suppaiah V, Ismail A, Hamid M, Shaari K, Lajis NH. Metabolic alteration in obese diabetes rats upon treatment with Centella asiatica extract. J Ethnopharmacol 2016; 180: 60-69
  • 19 Mohammad-Noor HS, Ismail NH, Kasim N, Mediani A, Zohdi RM, Al-Mekhlafi NA, Ali AM, Mat N. Urinary metabolomics and biochemical analysis of antihyperglycemic effect of Ficus deltoidea Jack varieties in streptozotocin-nicotinamide–induced diabetic rats. Appl Biochem Biotechnol 2020; 192: 1-21
  • 20 Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C. Multi- and Megavariate Data Analysis Basic Principles and Applications. 3rd edition. Umeå, Sweden: Umetrics Academy; 2013
  • 21 Galindo-Prieto B, Eriksson L, Trygg J. Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). J Chemom 2014; 28: 623-632
  • 22 Yang M, Li X, Li Z, Ou Z, Liu M, Liu S, Li X, Yang S. Gene features selection for three-class disease classification via multiple orthogonal partial least square discriminant analysis and S-plot using microarray data. PLoS One 2013; 8: 1-12
  • 23 Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, MacInnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L. HMDB: The human metabolome database. Nucleic Acids Res 2007; 35: 521-526
  • 24 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27-30
  • 25 Johanns M, Lai YC, Hsu MF, Jacobs R, Vertommen D, Van Sande J, Dumont JE, Woods A, Carling D, Hue L, Viollet B, Foretz M, Rider MH. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B. Nat Commun 2016; 7: 1-12
  • 26 Chutani A, Pande S. Correlation of serum creatinine and urea with glycemic index and duration of diabetes in type 1 and type 2 diabetes mellitus: A comparative study. Natl J Physiol Pharm Pharmacol 2017; 7: 914-919
  • 27 Adam J, Brandmaier S, Leonhardt J, Scheerer MF, Mohney RP, Xu T, Bi J, Rotter M, Troll M, Chi S, Heier M, Herder C, Rathmann W, Giani G, Adamski J, Illig T, Strauch K, Li Y, Gieger C, Peters A, Suhre K, Ankerst D, Meitinger T, De Angelis MH, Roden M, Neschen S, Kastenmüller G, Rui WS. Metformin effect on nontargeted metabolite profiles in patients with type 2 diabetes and in multiple murine tissues. Diabetes 2016; 65: 3776-3785
  • 28 Kesari AN, Gupta RK, Singh SK, Diwakar S, Watal G. Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J Ethnopharmacol 2006; 107: 374-379
  • 29 Yang T, Liu Y, Huang X, Zhang R, Yang C, Zhou J, Zhang Y, Wan J, Shi S. Quercetin-3-O-β-D-glucoside decreases the bioavailability of cyclosporin A through regulation of drug metabolizing enzymes, transporters and nuclear receptors in rats. Mol Med Rep 2018; 18: 2599-2612
  • 30 Wang JS, Lee IT, Lee WJ, Lin SD, Su SL, Tu ST, Lin SY, Sheu WHH. The dawn phenomenon in type 2 diabetes: Its association with glucose excursions and changes after oral glucose-lowering drugs. Ther Adv Chronic Dis 2021; 12: 1-8
  • 31 Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 2002; 277: 30409-30412
  • 32 Mediani A, Abas F, Maulidiani M, Abu Bakar Sajak A, Khatib A, Tan CP, Ismail IS, Shaari K, Ismail A, Lajis NH. Metabolomic analysis and biochemical changes in the urine and serum of streptozotocin-induced normal- and obese-diabetic rats. J Physiol Biochem 2018; 74: 403-416
  • 33 Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD, Burgess SC. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 2012; 53: 1080-1092
  • 34 Thrasher J. Pharmacologic management of type 2 diabetes mellitus: Available therapies. Am J Med 2017; 130: 4-17
  • 35 Vo QV, Nam PC, Thong NM, Trung NT, Phan CTD, Mechler A. Antioxidant motifs in flavonoids: O−H versus C−H bond dissociation. ACS Omega 2019; 4: 8935-8942
  • 36 Suh KS, Oh S, Woo JT, Kim SW, Kim JW, Kim YS, Chon S. Apigenin attenuates 2-deoxy-D-ribose-induced oxidative cell damage in HIT-T15 pancreatic β-cells. Biol Pharm Bull 2012; 35: 121-126
  • 37 Ding Y, Shi X, Shuai X, Xu Y, Liu Y, Liang X, Wei D, Su D. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction. J Biomed Res 2014; 28: 292-298
  • 38 Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol 2011; 670: 325-332
  • 39 Welsch CA, Lachahce PA, Wasserman AP. Dietary phenolic compounds: Inhibition of Na-dependent glucose uptake in rat intestinal brush border membrane vesicles. J Nutr 1989; 119: 1698-1704
  • 40 Fan L, Cacicedo JM, Ido Y. Impaired nicotinamide adenine dinucleotide (NAD+) metabolism in diabetes and diabetic tissues: Implications for nicotinamide-related compound treatment. J Diabetes Investig 2020; 11: 1403-1419
  • 41 Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, Connor SC, Griffin JL. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 2007; 29: 99-108