Subscribe to RSS
DOI: 10.1055/a-2055-2313
Pd-Catalyzed MIA-Directed Methoxylation of Phenylalanines: A Combined Experimental and Computational Study
We are grateful for the financial support from the National Natural Science Foundation of China (grant No. 21978124) and Key Projects of Ningbo Natural Science Foundation (grant No. 2022J003).
Abstract
The direct methoxylation of substituted phenylalanines has been accomplished via methoxyiminoacyl (MIA)-mediated Pd-catalyzed C–H functionalization. A diverse array of ortho-methoxylated phenylalanine derivatives are efficiently generated in good to high yields. KIE study has shown that the oxhydryl cleavage step is the rate-limiting step. The computational data show that the participation manner of methanol has a great influence on the energy barriers of transition states during the C(sp2)–O formation stage. The pathway containing stepwise deprotonation and reductive elimination is superior to that of a concerted deprotonation-methoxylation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2055-2313.
- Supporting Information
Publication History
Received: 10 January 2023
Accepted after revision: 15 March 2023
Accepted Manuscript online:
15 March 2023
Article published online:
20 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ishizumi K, Ohashi N, Tanno N. J. Org. Chem. 1987; 52: 4477
- 1b Doi R, lnoue K, Kogire M, Sumi S, Yun M, Futaki S, Fuji N, Yajima H, Tobe T. Biochem. Biophys. Res. Commun. 1988; 150: 1251
- 2a Zhang S.-Y, He G, Zhao Y, Wright K, Nack WA, Chen G. J. Am. Chem. Soc. 2012; 134: 7313
- 2b Planas O, Cornella J. Nat. Catal. 2019; 2: 839
- 2c Brittain WD. G, Lloyd CM, Cobb SL. J. Fluorine Chem. 2020; 239: 109630
- 2d Lerchen A, Knecht T, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 15166
- 2e Babawale F, Murugesan K, Narobe R, König B. Org. Lett. 2022; 24: 4793
- 3a Zeng W, Nukeyeva M, Wang Q, Jiang C. Org. Biomol. Chem. 2018; 16: 598
- 3b Liu P, Han J, Chen C.-P, Shi D.-Q, Zhao Y.-S. RSC. Adv. 2015; 5: 28430
- 3c Jiang T.-S, Wang G.-W. J. Org. Chem. 2012; 77: 9504
- 3d Wang G.-W, Yuan T.-T. J. Org. Chem. 2010; 75: 476
- 3e Desai LV, Malik HA, Sanford MS. Org. Lett. 2006; 8: 1141
- 3f Pan L, Wang L, Chen Q, He M. Synth. Commun. 2016; 46: 1981
- 3g Reddy BV. S, Revathi G, Reddy AS, Yadav JS. Tetrahedron Lett. 2011; 52: 5926
- 3h Sun M, Zhang L, Hua C.-W, Wang Z, Hou L.-K, Cai S.-X, Li S. Synlett. 2015; 26: 2843
- 3i Yin Z, Jiang X, Sun P. J. Org. Chem. 2013; 78: 10002
- 3j Shi S, Kuang C. J. Org. Chem. 2014; 79: 6105
- 3k Shi W, Shi Z. Chin. J. Chem. 2014; 32: 974
- 3l Yu M, Wang Z, Tian M, Lu C, Li S, Du H. J. Org. Chem. 2016; 81: 3435
- 3m Reddy BV. S, Umadevi N, Narasimhulu G, Yadav JS. Tetrahedron Lett. 2012; 53: 6091
- 4 Fan M, Ma D. Angew. Chem. Int. Ed. 2013; 52: 1
- 5 He Y.-P, Zhang C, Fan M, Wu Z, Ma D. Org. Lett. 2015; 17: 496
- 6a Niu P.-P, Liu P.-Y, Meng Y.-N, Yu F, He Y.-P. J. Org. Chem. 2021; 86: 3096
- 6b Tao Q, Li Y.-N, Tang W.-J, Liu P.-Y, Yu F, He Y.-P. Tetrahedron Lett. 2021; 74: 153158
- 7 Wang X, Niu S, Xu L, Zhang C, Meng L, Zhang X, Ma D. Org. Lett. 2017; 19: 246
- 8a Liu P.-Y, Zhao S.-C, Zhang M.-Y, Song L, Wang C, Yu F, Meng Q, Zhang Z, He Y.-P. J. Org. Chem. 2022; 87: 6378
- 8b Meng Y.-N, Zhao S.-C, Liu P.-Y, Hu D, Wang S, He Y.-P, Yu F. Eur. J. Org. Chem. 2022; e202200728
- 9a Chen G, Liu P.-Y, Zou H, Hu J, Fang X, Xu D, He Y.-P, Wei H, Xie W. Org. Lett. 2021; 23: 2279
- 9b Wang K, Zhang W, Liu N, Hu D, Yu F, He Y.-P. Langmuir 2022; 38: 11492
- 9c Zhang W, Wang K, Wang C, Zhao S, Zhang Z, Yu F, He Y.-P. Colloids Surf. A 2022; 641: 128422
- 9d Zhang W, Zhang Z, Zhao S, Hong KH, Zhang M.-Y, Song L, Yu F, Luo G, He Y.-P. Langmuir 2021; 37: 2954
- 9e Yang Y, Chen G, Hong X, Yu J.-Q, Houk KN. J. Am. Chem. Soc. 2017; 139: 8514
- 9f Wang P, Verma P, Xia G, Shi J, Qiao J, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung K.-S, Yu J.-Q. Nature 2017; 551: 489
- 9g Zhang S.-Y, He G, Zhao Y, Wright K, Nack WA, Chen G. J. Am. Chem. Soc. 2012; 134: 7313
- 9h Du C.-C, Xie S.-J, Zhai D.-D, Shi Z.-J, Fang H. Sci. China Chem. 2021; 64: 1693
- 9i Chen J.-H, Teng M.-Y, Huang F.-R, Song H, Wang Z.-K, Zhuang H.-L, Wu Y.-J, Wu X, Yao Q.-J, Shi B.-F. Angew. Chem. Int. Ed. 2022; 61: e2022101
- 10 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian. Inc., 16, Revision A.03. Wallingford CT,; 2016
- 11a Deprez NR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 11234
- 11b He G, Lu G, Guo Z.-W, Liu P, Chen G. Nat. Chem. 2016; 8: 1131
- 12 Humphrey W, Dalke A, Schulten K. J. Mol. Graph. 1996; 14: 33