RSS-Feed abonnieren
DOI: 10.1055/a-2055-2591
Digitale Volumentomografie bei der Behandlung von Radiusfrakturen
Cone-beam computed tomography in the treatment of distal radius fractures
Zusammenfassung
Die digitale Volumentomografie (DVT) bietet in der Handchirurgie eine relativ neue Form der Schnittbildgebung. Die distale Radiusfraktur nimmt als häufigste Fraktur des Erwachsenen einen besonderen Stellenwert ein, nicht nur für Handchirurgen. Das Patientenaufkommen ist hoch und es bedarf schneller und valider Diagnostik. Operative Techniken und Möglichkeiten werden stetig weiterentwickelt, insbesondere was intraartikuläre Frakturen betrifft. Der Anspruch auf exakte Versorgung ist hoch. Bei der Indikation einer präoperativen dreidimensionalen Bildgebung besteht weitestgehend Einigkeit und sie findet häufig Anwendung. Üblicherweise erfolgt sie mittels Mehrzeilen-Spiral-CT (Multidetektor-CT, MDCT). Die postoperative Bildgebung beschränkt sich in den meisten Fällen auf konventionelle Röntgenbilder in zwei Ebenen. Allgemein akzeptierte Empfehlungen bezüglich einer postoperativen 3D-Bildgebung existieren bisher nicht. Die Datenlage ist spärlich. Sollte eine CT indiziert sein, so wird diese üblicherweise ebenfalls mittel MDCT durchgeführt. Die DVT-Diagnostik im Bereich des Handgelenkes ist noch wenig verbreitet. Diese Arbeit beschäftigt sich mit dem möglichen Einsatz der DVT in der perioperativen Diagnostik distaler Radiusfrakturen. Die DVT ermöglicht eine exzellente Bildqualität bei potentiell niedrigerer Strahlenbelastung im Vergleich zur MDCT, mit und ohne einliegendem Osteosynthesematerial. Sie ist schnell verfügbar und eigenständig durchführbar, was zeitsparend und effizient ist und damit den klinischen Alltag erleichtert. Durch ihre vielen Vorteile stellt die DVT bei der perioperativen Diagnostik von Radiusfrakturen eine empfehlenswerte Alternative zum MDCT dar.
Abstract
Cone-beam computed tomography (CBCT) is a relatively new imaging technique in hand surgery. Being the most common fractures in adults, distal radius fractures are of special importance not only to hand surgeons. The quantity alone calls for fast, efficient and reliable diagnostic procedures. Surgical techniques and possibilities are progressing, especially regarding intra-articular fracture patterns. The demand for exact anatomic reduction is high. There is an overall consensus regarding the indication for preoperative three-dimensional imaging and it is frequently used. Typically, it is obtained by multi-detector computed tomography (MDCT). Postoperative diagnostic procedures are usually limited to plain x-rays. Commonly accepted recommendations regarding postoperative 3D imaging are not yet established. There is a lack of relevant literature. In case of an indication for a postoperative CT scan, it is generally also obtained by MDCT. CBCT for the wrist is not widely used as yet. This review focuses on the potential role of CBCT in the perioperative management of distal radius fractures. CBCT allows for high-resolution imaging with a potentially lower radiation dose compared with MDCT, both with and without implants. It is easily available and can be operated independently, thus being time-efficient and making daily practice easier. Due to its many advantages, CBCT is a recommendable alternative to MDCT in the perioperative management of distal radius fractures.
Publikationsverlauf
Eingereicht: 03. März 2023
Angenommen: 12. März 2023
Artikel online veröffentlicht:
12. Juni 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Knirk JL, Jupiter JB. Intra-articular fractures of the distal end of the radius in young adults. J Bone Joint Surg Am 1986; 68: 647-659
- 2 Finsen V, Rod O, Rod K. et al. The relationship between displacement and clinical outcome after distal radius (Colles’) fracture. J Hand Surg Eur Vol 2013; 38: 116-126
- 3 Goldfarb CA, Rudzki JR, Catalano LW. et al. Fifteen-year outcome of displaced intra-articular fractures of the distal radius. J Hand Surg Am 2006; 31: 633-639
- 4 Ng CY, McQueen MM. What are the radiological predictors of functional outcome following fractures of the distal radius?. J Bone Joint Surg Br 2011; 93: 145-150
- 5 Karnezis IA, Panagiotopoulos E, Tyllianakis M. et al. Correlation between radiological parameters and patient-rated wrist dysfunction following fractures of the distal radius. Injury 2005; 36: 1435-1439
- 6 Mauck BM, Swigler CW. Evidence-Based Review of Distal Radius Fractures. Orthop Clin North Am 2018; 49: 211-222
- 7 Pillukat T, Osorio M, Prommersberger KJ. Die Korrektur intraartikulärer Fehlstellungen am distalen Radius auf der Basis computergestützter virtueller Planungen. Handchir Mikrochir Plast Chir 2018; 50: 310-318
- 8 Tang JB. Distal radius fracture: diagnosis, treatment, and controversies. Clin Plast Surg 2014; 41: 481-499
- 9 Hintringer W, Rosenauer R, Pezzei C. et al. Biomechanical considerations on a CT-based treatment-oriented classification in radius fractures. Arch Orthop Trauma Surg 2020; 140: 595-609
- 10 Arora R, Lutz M, Hennerbichler A. et al. Complications following internal fixation of unstable distal radius fracture with a palmar locking-plate. J Orthop Trauma 2007; 21: 316-322
- 11 Medoff RJ. Essential radiographic evaluation for distal radius fractures. Hand Clin 2005; 21: 279-288
- 12 Expert Panel on Musculoskeletal I, Torabi M, Lenchik L et al. ACR Appropriateness Criteria® Acute Hand and Wrist Trauma. J Am Coll Radiol 2019; 16: S7-S17
- 13 Suojarvi N, Sillat T, Lindfors N. et al. Radiographical measurements for distal intra-articular fractures of the radius using plain radiographs and cone beam computed tomography images. Skeletal Radiol 2015; 44: 1769-1775
- 14 Arora S, Grover SB, Batra S. et al. Comparative evaluation of postreduction intra-articular distal radial fractures by radiographs and multidetector computed tomography. J Bone Joint Surg Am 2010; 92: 2523-2532
- 15 Harness NG, Ring D, Zurakowski D. et al. The influence of three-dimensional computed tomography reconstructions on the characterization and treatment of distal radial fractures. J Bone Joint Surg Am 2006; 88: 1315-1323
- 16 Raducha JE, Got CJ. Nuances of Radiographic Assessment of Distal Radius Fractures to Avoid Missed Fragments. Hand Clin 2021; 37: 197-204
- 17 Dahlen HC, Franck WM, Sabauri G. et al. Fehlklassifikation extraartikulärer distaler Radiusfrakturen in konventionellen Röntgenaufnahmen.Vergleichende Untersuchung der Frakturmorphologie zwischen biplanarer Röntgendiagnostik und CT. Unfallchirurg 2004; 107: 491-498
- 18 Grunz JP, Pennig L, Fieber T. et al. Twin robotic x-ray system in small bone and joint trauma: impact of cone-beam computed tomography on treatment decisions. Eur Radiol 2021; 31: 3600-3609
- 19 Cole RJ, Bindra RR, Evanoff BA. et al. Radiographic evaluation of osseous displacement following intra-articular fractures of the distal radius: reliability of plain radiography versus computed tomography. J Hand Surg Am 1997; 22: 792-800
- 20 Gong XY, An GS, Gao ZQ. et al. [The role of CT in the diagnosis and treatment of distal radius fracture]. Zhonghua Wai Ke Za Zhi 2006; 44: 1414-1416
- 21 Li SL, Wang MY, Lu Y. [Diagnostic value of CT scan for AO B3 fracture of distal radius]. Beijing Da Xue Xue Bao Yi Xue Ban 2017; 49: 675-679
- 22 Jakubietz MG, Mages L, Zahn RK. et al. The role of CT scan in postoperative evaluation of distal radius fractures: Retrospective analysis in regard to complications and revision rates. J Orthop Sci 2017; 22: 434-437
- 23 Lorenzen M, Wedegartner U, Weber C. et al. Postoperative monitoring of distal intraarticular radial fractures treated with osteosynthesis by means of multislice CT. Rofo 2011; 183: 120-125
- 24 Lee CH, Kwon Y, Jung IY. et al. Effect of the Articular Surface Incongruency on Surgical Outcome of the Distal Radius Fracture. Biomed Res Int 2022; 2022: 8357675
- 25 Halvachizadeh S, Berk T, Pieringer A. et al. Is the Additional Effort for an Intraoperative CT Scan Justified for Distal Radius Fracture Fixations? A Comparative Clinical Feasibility Study. J Clin Med 2020; 9: 2254
- 26 Schnetzke M, Fuchs J, Vetter SY. et al. Intraoperative three-dimensional imaging in the treatment of distal radius fractures. Arch Orthop Trauma Surg 2018; 138: 487-493
- 27 Mozzo P, Procacci C, Tacconi A. et al. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1998; 8: 1558-1564
- 28 Mys K, Varga P, Stockmans F. et al. High-Resolution Cone-Beam Computed Tomography is a Fast and Promising Technique to Quantify Bone Microstructure and Mechanics of the Distal Radius. Calcif Tissue Int 2021; 108: 314-323
- 29 Fitzpatrick E, Sharma V, Rojoa D. et al. The use of cone-beam computed tomography (CBCT) in radiocarpal fractures: a diagnostic test accuracy meta-analysis. Skeletal Radiol 2022; 51: 923-934
- 30 Grunz JP, Jordan MC, Schmitt R. et al. Gantry-Free High-Resolution Cone-Beam CT: Efficacy for Distal Radius and Scaphoid Fracture Detection and Characterization. Acad Radiol 2022; S1076-S6332 (22)00486-X
- 31 Neubauer J, Neubauer C, Gerstmair A. et al. Comparison of the Radiation Dose from Cone Beam Computed Tomography and Multidetector Computed Tomography in Examinations of the Hand. Rofo 2016; 188: 488-493
- 32 Scarfe WC, Farman AG. What is cone-beam CT and how does it work. Dent Clin North Am 2008; 52: 707-730 v
- 33 Goerke SM, Neubauer J, Zajonc H. et al. Digitale Volumentomografie (DVT) des knöchernen Handskeletts: Erste Erfahrungen und Anwendungsmöglichkeiten. Handchir Mikrochir Plast Chir 2015; 47: 24-31
- 34 Borel C, Larbi A, Delclaux S. et al. Diagnostic value of cone beam computed tomography (CBCT) in occult scaphoid and wrist fractures. Eur J Radiol 2017; 97: 59-64
- 35 De Cock J, Zanca F, Canning J. et al. A comparative study for image quality and radiation dose of a cone beam computed tomography scanner and a multislice computed tomography scanner for paranasal sinus imaging. Eur Radiol 2015; 25: 1891-1900
- 36 Huang AJ, Chang CY, Thomas BJ. et al. Using cone-beam CT as a low-dose 3D imaging technique for the extremities: initial experience in 50 subjects. Skeletal Radiol 2015; 44: 797-809
- 37 Koivisto J, van Eijnatten M, Kiljunen T. et al. Effective Radiation Dose in the Wrist Resulting from a Radiographic Device, Two CBCT Devices and One MSCT Device: A Comparative Study. Radiat Prot Dosimetry 2018; 179: 58-68
- 38 Iordache SD, Goldberg N, Paz L. et al. Radiation Exposure From Computed Tomography Of The Upper Limbs. Acta Orthop Belg 2017; 83: 581-588
- 39 Matikka H, Viren T. Radiation dose reduction in cone-beam computed tomography of extremities: evaluation of a novel radiation shield. J Radiol Prot 2014; 34: N57-N63
- 40 Grunz JP, Weng AM, Gietzen CH. et al. Evaluation of Ultra-High-Resolution Cone-Beam CT Prototype of Twin Robotic Radiography System for Cadaveric Wrist Imaging. Acad Radiol 2021; 28: e314-e322
- 41 De Cock J, Mermuys K, Goubau J. et al. Cone-beam computed tomography: a new low dose, high resolution imaging technique of the wrist, presentation of three cases with technique. Skeletal Radiol 2012; 41: 93-96
- 42 Schulze R, Heil U, Gross D. et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol 2011; 40: 265-273
- 43 Schulze R. CBCT artefact-burden of zirconia-based as compared to titanium implants for different beam energies: an analytical approach. Sci Rep 2022; 12: 15276
- 44 Neubauer J, Voigt JM, Lang H. et al. Comparing the image quality of a mobile flat-panel computed tomography and a multidetector computed tomography: a phantom study. Invest Radiol 2014; 49: 491-497
- 45 Pallaver A, Honigmann P. The Role of Cone-Beam Computed Tomography (CBCT) Scan for Detection and Follow-Up of Traumatic Wrist Pathologies. J Hand Surg Am 2019; 44: 1081-1087
- 46 Oehme F, Kremo V, Veelen NV. et al. Routinemäßige Röntgenaufnahmen nach Osteosynthese distaler Radius- und Sprunggelenksfrakturen. Dtsch Arztebl Int 2022; 119: 279-284
- 47 Oehme F, Ruhle A, Muhlhausser J. et al. Are Routine Radiographs Needed the Day After Open Reduction and Internal Fixation Surgery for Distal Radius and Ankle Fractures: Study Protocol for a Prospective, Open Label, Randomized Controlled Trial. JMIR Res Protoc 2017; 6: e159
- 48 Artmann M. Additional Comments. Dtsch Arztebl International 2022; 119: 726-726
- 49 Haug LC, Glodny B, Deml C. et al. A new radiological method to detect dorsally penetrating screws when using volar locking plates in distal radial fractures. The dorsal horizon view. Bone Joint J 2013; 95-B: 1101-1105