Subscribe to RSS
DOI: 10.1055/a-2055-7678
Preparation of Divergent Intermediates and Convergent Synthesis of Phytofluene
This work was supported by the 2021 Research Fund of Myongji University.
This paper is dedicated to the late Prof. Synnøve Liaaen-Jensen for her dedication to carotenoid research.
Abstract
Practical synthetic methods for biogenetically and pharmaceutically important phytofluene were developed through the divergent preparation of key C20 substrates from a common intermediate and convergent synthesis by Wittig and Julia–Kocienski olefinations. Expeditious synthesis of phytofluene was also proposed based on the Julia sulfone-mediated chain-extension and double elimination method. Stereochemical outcomes of these olefination methods for phytofluene were compared and the Julia–Kocienski method was the mildest and most efficient reaction condition to produce all-(E)-phytofluene. Complete 1H and 13C NMR analysis of all-(E)-phytofluene is reported for the first time. Phytofluene undergoes facile thermal isomerization to other Z-isomers above room temperature, which was also confirmed with a C30 phytofluene homologue.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2055-7678.
- Supporting Information
Publication History
Received: 17 February 2023
Accepted after revision: 15 March 2023
Accepted Manuscript online:
15 March 2023
Article published online:
19 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Kotake-Nara E, Miyashita K, Nagao A, Kushiro M, Zhang H, Sugawara T. J. Nutr. 2001; 131: 3303
- 2 De Spirt S, Lutter K, Stahl W. Curr. Nutr. Food Sci. 2010; 6: 36
- 3 Aust O, Stahl W, Sies H, Tronnier H, Heinrich U. Int. J. Vitam. Nutr. Res. 2005; 75: 54
- 4 Dogbo O, Laferrière A, D’Harlingue A, Camara B. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 7054
- 5a Goodwin TW, Jamikorn M. Nature 1952; 170: 104
- 5b Koe BK, Zechmeister L. Arch. Biochem. Biophys. 1952; 41: 236
- 6 Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ. Food Chem. 2007; 101: 1145
- 7a Zechmeister L, Sandoval A. J. Am. Chem. Soc. 1946; 68: 197
- 7b Wallace V, Porter JW. Arch. Biochem. Biophys. 1952; 36: 468
- 8 Meléndez-Martínez AJ, Mapelli-Brahm P, Benítez-González A, Stinco CM. Arch. Biochem. Biophys. 2015; 572: 188
- 9 Meléndez-Martínez AJ, Stinco CM, Mapelli-Brahm P. Nutrients 2019; 11: 1093
- 10a Clough JM, Pattenden G. J. Chem. Soc., Chem. Commun. 1979; 616
- 10b Meléndez-Martínez AJ, Paulino M, Stinco CM, Mapelli-Brahm P, Wang X.-D. J. Agric. Food Chem. 2014; 62: 12399
- 11 Clough JM, Pattenden G. Tetrahedron Lett. 1979; 20: 5043
- 12a Davis JB, Jackman LM, Siddons PT, Weedon BC. L. J. Chem. Soc. C 1966; 2154
- 12b Ernst H, Henrich K. DE Patent 10349983, 2005
- 14 Kuk J, Kim BS, Jung H, Choi S, Park J.-Y, Koo S. J. Org. Chem. 2008; 73: 1991
- 15 Babler J, Coghlan MJ, Feng M, Fries P. J. Org. Chem. 1979; 44: 1716
- 16 Giam CS, Kikukawa K, Trujillo DA. Org. Prep. Proced. Int. 1981; 13: 137
- 17a Choi H, Ji M, Park M, Yun I.-K, Oh S.-S, Baik W, Koo S. J. Org. Chem. 1999; 64: 8051
- 17b Ji M, Choi H, Park M, Kee M, Jeong YC, Koo S. Angew. Chem. Int. Ed. 2001; 40: 3627
- 17c Ji M, Choi H, Jeong YC, Jin J, Baik W, Lee S, Kim JS, Park M, Koo S. Helv. Chim. Acta 2003; 86: 2620
- 17d Guha SK, Koo S. J. Org. Chem. 2005; 70: 9662
- 17e Choi E, Yeo JE, Koo S. Adv. Synth. Catal. 2008; 350: 365
- 17f Oh E.-T, Kim Y.-H, Jin J, Su L, Seo J.-A, Koo S. J. Org. Chem. 2014; 79: 4712
- 17g Kim M, Jung H, Aragonès AC, Díez-Pérez I, Ahn K.-H, Chung W.-J, Kim D, Koo S. Org. Lett. 2018; 20: 493
- 17h Lim B, Kim Y.-H, Kim H, Park M, Yeo H, Koo S. Bull. Korean Chem. Soc. 2022; 43: 1037
- 18 Martínez A, Stinco CM, Meléndez-Martínez AJ. J. Phys. Chem. B 2014; 118: 9819
- 19 Koe BK, Zechmeister L. Arch. Biochem. Biophys. 1953; 46: 100
- 20 Clough JM, Pattenden G. J. Chem. Soc., Perkin Trans. 1 1983; 3011