Osteologie 2023; 32(03): 176-182
DOI: 10.1055/a-2057-0273
Review

(Trainings-)Methodische Empfehlungen eines körperlichen Trainings zur Verbesserung der Knochenfestigkeit

Belastungskomponenten und KnochenfestigkeitRecommendations on exercise methods for bone strengthening
Simon von Stengel
1   Institut für Radiologie, Universitätsklinikum Erlangen, Erlangen, Deutschland
,
Matthias Kohl
2   Department of Medical and Life Sciences, Hochschule Furtwangen - Campus Villingen-Schwenningen, Villingen-Schwenningen, Deutschland
,
Franz Jakob
3   Bernhard-Heine-Centrum für Bewegungsforschung, Julius-Maximilians-Universität Würzburg, Würzburg, Deutschland
,
Katharina Kerschan-Schindl
4   Physikalische Medizin und Rehabilitation, Universität Wien, Wien, Österreich
,
Uwe Lange
5   Physikalische Medizin und Osteologie, Kerckhoff-Klinik GmbH, Bad Nauheim, Deutschland
,
Stefan Peters
6   Deutscher Verband für Gesundheitssport und Sporttherapie e.V., Erlangen, Deutschland
,
Friederike Thomasius
7   Frankfurter Hormon- und Osteoporosezentrum, Frankfurt, Deutschland
,
Michael Uder
1   Institut für Radiologie, Universitätsklinikum Erlangen, Erlangen, Deutschland
,
Mahdieh Shojaa
8   Institute of Health Science, Universitätsklinikum Tübingen, Tübingen, Deutschland
,
1   Institut für Radiologie, Universitätsklinikum Erlangen, Erlangen, Deutschland
› Institutsangaben

Zusammenfassung

Die Belastungskomponenten bestimmen die Ausrichtung der Trainingsreize und sind somit maßgebend für die Wirkung eines Trainingsprotokolls auf die Knochenfestigkeit. In Anlehnung an die klassische Trainingswissenschaft ist eine Klassifizierung der Belastungskomponenten in Reizhöhe („strain-magnitude“), Reizrate („strain-rate“), Wiederholungsanzahl („cycle number“), Reizdauer, Reizfrequenz, Reizdichte und Trainingshäufigkeit nachvollziehbar und anwendbar. Zusammenfassend weisen intensitätsorientierte Trainingsprogramme, die mit hoher Reizhöhe und -rate und kurzer Reizdauer im dynamischen Modus mindestens zweimal/Woche appliziert werden, die höchste osteoanabole Potenz auf. Die Anzahl der Wiederholungen spielt bei der Anwendung hoher Reizintensitäten eine geringe Rolle. Reizintensitäten im Grenzbereich oder (leicht) unter der mechanischen Reizschwelle können möglicherweise über eine Erhöhung der Wiederholungsanzahl auf ein überschwelliges Niveau angehoben werden. Ähnliches gilt für die Reizfrequenz im Spektrum der willkürlichen Aktivierung (<5 Hz). Die Reizdichte bezieht ihre Relevanz aus der Desensibilisierungsproblematik des Knochens nach häufiger überschwelliger Reizsetzung. Regelmäßige Entlastungsphasen zur Resensibilisierung des Knochengewebes können im Rahmen blockperiodisierter Trainingsprogramme Raum für die Adressierung anderer relevanter Trainingsziele ohne relevante mechanische Belastung bieten.

Abstract

The optimum composition of strain parameters (or loading parameters) is crucial in designing exercise protocols with positive effects on bone strength and associated parameters. Although strain parameters related to bone adaption differ slightly from the common terminology usually applied in sport sciences, their categorization is very similar. Introducing strain parameters, (1) strain magnitude is characterized by the extent of the deformation of the bone caused by loading, while (2) strain rate represents the alteration in strain magnitude per second during the acceleration or deceleration of loading. (3) Training frequency and (4) cycle number indicate the amount of training sessions (usually per week) and the number of loading cycles/repetitions per set/session, while (5) strain duration is characterized by the length of a single loading cycle. (6) Strain frequency represents the number of loading cycles per sec (Hz) and finally (6) strain density characterizes the relationship between loading and rest periods with respect to single loading cycles, sets of cycles, training sessions or training periods (mesocycles). In summary, exercise programs applied with high strain magnitude and rate and a short cycle duration in a dynamic mode at least twice/week showed the highest osteoanabolic potency. The number of repetitions plays a minor role, at least when high exercise intensity (high strain magnitude-/rate) was applied. However, there is some evidence that stimuli around or (slightly) below bone mechanical threshold can be raised to a supra-threshold level by increasing the number of repetitions. The same might also be the case for strain frequency in the spectrum of voluntary movements (<5 Hz). The relevance of strain density is closely related to the “desensitization phenomena” of bone after repeated intense loading. Applying regular resensitization periods without relevant mechanical loading between phases of intense bone specific exercise enables other important training aims to be addressed with high emphasis during the corresponding periods.



Publikationsverlauf

Eingereicht: 22. Februar 2023

Angenommen: 16. März 2023

Artikel online veröffentlicht:
19. April 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Weineck J. Optimales Training. Erlangen: Spitta-Verlag; 2019
  • 2 Kemmler W, Weineck J, Hensen J, Lauber D, Kalender WA, Engelke K. Empfehlungen für ein körperliches Training zur Verbesserung der Knochenfestigkeit: Schlussfolgerungen aus Tiermodellen und Untersuchungen an Leistungssportlern. Dtsch Z Sportmed 2003; 54: 306-316
  • 3 Fröhlich M, Kemmler W. Kraft und Krafttraining im Sport. In: Güllich A, Krüger, M., Hrsg. Bewegung, Training, Leistung und Gesundheit. Berlin, Heidelberg: Springer; 2019. DOI: 10.1007/978-3-662-53386-4_46-1
  • 4 Fröhlich M, Kemmler W, Pfeiffer M. Training im Sport als Prozess – Trainingssteuerung. In: Güllich A, Krüger M, Hrsg. Bewegung, Training und Leistung. Heidelberg, Berlin: Springer; 2020
  • 5 Kemmler W, von Stengel S. Osteoporose. In: Mooren F, Knapp G, Reimers CD, Hrsg. Prävention und Therapie durch Sport. München: Urban und Fischer; 2016
  • 6 Kemmler W, Stengel V. The Role of Exercise on Fracture Reduction and Bone Strengthening. In: Zoladz J, Hrsg. Muscle and Exercise Physiology. London: Academic Press; 2019: 433-448
  • 7 Kemmler W, Beeskow C, Pintag R. et al. Umsetzung moderner trainingswissenschaftlicher Erkenntnisse in ein knochenanaboles Training für früh-postmenopausale Frauen - Die Erlanger Fitness und Osteoporose Präventions Studie (EFOPS). Osteologie 2004; 13: 65-77
  • 8 Gentil P, Arruda A, Souza D. et al. Is There Any Practical Application of Meta-Analytical Results in Strength Training?. Front Physiol 2017; 8: 1 DOI: 10.3389/fphys.2017.00001.
  • 9 Kemmler W. Meta-analysis and exercise related sports medicine [Meta-Analysen im trainingswissenschaftlichen und sportmedizinischen Spannungsfeld]. Dt Ztschr Sportmedizin 2013; 64: 96-98
  • 10 Frost HM. Bone mass and the mechanostat. A proposal. Anat Rec 1987; 219: 1-19
  • 11 Hsieh YF, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res 2001; 16: 918-924
  • 12 Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985; 37: 411-417
  • 13 Kistler-Fischbacher M, Weeks BK, Beck BR. The effect of exercise intensity on bone in postmenopausal women (part 2): A meta-analysis. Bone 2021; 143: 115697 DOI: 10.1016/j.bone.2020.115697.
  • 14 Kast S, Shojaa M, Kohl M. et al. Effects of different exercise intensity on bone mineral density in adults: a comparative systematic review and meta-analysis. Osteoporos Int 2022; DOI: 10.1007/s00198-022-06329-7.
  • 15 Souza D, Barbalho M, Ramirez-Campillo R. et al. High and low-load resistance training produce similar effects on bone mineral density of middle-aged and older people: A systematic review with meta-analysis of randomized clinical trials. Exp Gerontol 2020; 138: 110973 DOI: 10.1016/j.exger.2020.110973.
  • 16 Steele J, Fisher J, Giessing J. et al. Clarity in Reporting Terminology and Definitions of Set End Points in Resistance Training. Muscle Nerve 2017; 10: 368-374 DOI: 10.1002/mus.25557.
  • 17 Barbalho M, Gentil P, Raiol R. et al. High 1RM Tests Reproducibility and Validity are not Dependent on Training Experience, Muscle Group Tested or Strength Level in Older Women. Sports (Basel) 2018; 6 DOI: 10.3390/sports6040171.
  • 18 Kemmler W, Lauber D, Mayhew D. et al. Predicting maximal strength in trained postmenopausal woman. J Strength Cond Res 2006; 20: 838-842
  • 19 Gießing J. HIT-Hochintensitätstraining Arnsberg: Novagenics-Verlag. 2008
  • 20 Kemmler W, Kohl M, Jakob F. et al. Effects of High Intensity Dynamic Resistance Exercise and Whey Protein Supplements on Osteosarcopenia in Older Men with Low Bone and Muscle Mass. Final Results of the Randomized Controlled FrOST Study. Nutrients 2020; 12: 2341 DOI: 10.3390/nu12082341.
  • 21 Zourdos MC, Klemp A, Dolan C. et al. Novel Resistance Training-Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J Strength Cond Res 2016; 30: 267-275 DOI: 10.1519/JSC.0000000000001049.
  • 22 Judex S, Zernicke RF. High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation. J Appl Physiol 2000; 88: 2183-2191
  • 23 Judex S, Zernicke RF. Does the mechanical milieu associated with high-speed running lead to adaptive changes in diaphyseal growing bone?. Bone 2000; 26: 153-159
  • 24 McDonald F, Yettram AL, MacLeod K. The response of bone to external loading regimes. Med Eng Phys 1994; 16: 384-397
  • 25 Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 1998; 23: 313-318
  • 26 Skerry TM, Peet NM. “Unloading” exercise increases bone formation in rats. J Bone Miner Res 1997; 12: 1520
  • 27 Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol Endocrinol Metab 1995; 269: E438-E442
  • 28 Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab 2011; 28: 251-267 DOI: 10.1007/s00774-009-0139-6.
  • 29 Babatunde OO, Forsyth JJ, Gidlow CJ. A meta-analysis of brief high-impact exercises for enhancing bone health in premenopausal women. Osteoporos Int 2012; 23: 109-119 DOI: 10.1007/s00198-011-1801-0.
  • 30 Kato T, Terashima T, Yamashita T. et al. Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol (1985) 2006; 100: 839-843 DOI: 10.1152/japplphysiol.00666.2005.
  • 31 von Stengel S, Kemmler W, Lauber D. et al. Power Training is more Effective than Strength Training to Maintain Bone Mineral Density in Postmenopausal Woman. J Appl Physiol 2005; 99: 181-188
  • 32 Kemmler W, Lauber D, Weineck J. et al. Benefits of 2 years of intense exercise on bone density, physical fitness, and blood lipids in early postmenopausal osteopenic women: results of the Erlangen Fitness Osteoporosis Prevention Study (EFOPS). Arch Intern Med 2004; 164: 1084-1091 DOI: 10.1001/archinte.164.10.1084/164/10/1084.
  • 33 Kemmler W, Engelke K, von Stengel S. et al. Long-term four-year exercise has a positive effect on menopausal risk factors: the Erlangen Fitness Osteoporosis Prevention Study. J Strength Cond Res 2007; 21: 232-239 DOI: 10.1519/R-20826.1.
  • 34 Biewener AA. Safety factors in bone strength. Calcif Tissue Int 1993; 53: S68-74
  • 35 Allen SH. Exercise considerations for postmenopausal women with osteoporosis. Arthritis Care Res 1994; 7: 205-214
  • 36 Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984; 66: 397-402
  • 37 Umemura Y, Ishiko T, Yamauchi T. et al. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 1997; 12: 1480-1485
  • 38 Cullen DM, Smith RT, Akhter MP. Bone-loading response varies with strain magnitude and cycle number. J Appl Physiol 2001; 91: 1971-1976
  • 39 Bassey EJ, Rothwell MC, Littlewood JJ. et al. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 1998; 13: 1805-1813
  • 40 Montgomery GJ, Abt G, Dobson CA. et al. A 12-month continuous and intermittent high-impact exercise intervention and its effects on bone mineral density in early postmenopausal women: a feasibility randomized controlled trial. J Sports Med Phys Fitness 2020; 60: 770-778 DOI: 10.23736/S0022-4707.20.10412-2.
  • 41 Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone 1998; 23: 399-407
  • 42 Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone 2002; 30: 781-786
  • 43 Robling AG, Duijvelaar KM, Geevers JV. et al. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone 2001; 29: 105-113
  • 44 Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow?. Faseb J 1994; 8: 875-878
  • 45 de Oliveira TMD, Felicio DC, Filho JE. et al. Effects of whole-body electromyostimulation on health indicators of older people: Systematic review and meta-analysis of randomized trials. J Bodyw Mov Ther 2022; 31: 134-145 DOI: 10.1016/j.jbmt.2022.03.010.
  • 46 Turner CH, Robling AG. Exercise as an anabolic stimulus for bone. Curr Pharm Des 2004; 10: 2629-2641
  • 47 Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 2001; 204: 3389-3399
  • 48 Umemura Y, Sogo N, Honda A. Effects of intervals between jumps or bouts on osteogenic response to loading. J Appl Physiol 2002; 93: 1345-1348
  • 49 Robling AG, Hinant FM, Burr DB. et al. Shorter, more frequent mechanical loading sessions enhance bone mass. Med Sci Sports Exerc 2002; 34: 196-202
  • 50 Saxon LK, Robling AG, Alam IM. et al. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 2005; 36: 454-464
  • 51 Kemmler W, Bebenek M, Kohl M. et al. Exercise and fractures in postmenopausal women. Final results of the controlled Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int 2015; 26: 2491-2499 DOI: 10.1007/s00198-015-3165-3.
  • 52 Kemmler W, Bebenek M, von Stengel S. et al. Effect of block-periodized exercise training on bone and coronary heart disease risk factors in early post-menopausal women: a randomized controlled study. Scand J Med Sci Sports 2013; 23: 121-129 DOI: 10.1111/j.1600-0838.2011.01335.x.
  • 53 Hettchen M, von Stengel S, Kohl M. et al. Changes in Menopausal Risk Factors in Early Postmenopausal Osteopenic Women After 13 Months of High-Intensity Exercise: The Randomized Controlled ACTLIFE-RCT. Clin Interv Aging 2021; 16: 83-96 DOI: 10.2147/CIA.S283177.
  • 54 Carlson SA, Fulton JE, Schoenborn CA. et al. Trend and prevalence estimates based on the 2008 Physical Activity Guidelines for Americans. Am J Prev Med 2010; 39: 305-313 DOI: 10.1016/j.amepre.2010.06.006.
  • 55 Statistisches-Bundesamt. Gesundheit in Deutschland [Health in Germany]. In: Gesundheitsberichterstattung des Bundes. Berlin: 2016
  • 56 Rütten A, Abu-Omar K, Lampert T. et al. Körperliche Aktivität [Physical Activity]. Report. In: Robert-Koch-Institut ed Gesundheitsberichterstattung des Bundes. Berlin: Statistisches Bundesamt; 2005
  • 57 DESTATIS. Gesundheit - Ausgaben 2014. Wiesbaden: 2016
  • 58 Zitzmann AL, Shojaa M, Kast S. et al. The effect of different training frequency on bone mineral density in older adults. A comparative systematic review and meta-analysis. Bone 2021; 154: 116230 DOI: 10.1016/j.bone.2021.116230.
  • 59 Kemmler W, von Stengel S. Exercise frequency, health risk factors, and diseases of the elderly. Arch Phys Med Rehabil 2013; 94: 2046-2053 DOI: 10.1016/j.apmr.2013.05.013.
  • 60 Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports 2014; 24: 526-534 DOI: 10.1111/sms.12024.
  • 61 Yang P, Brüggemann G-P, Rittweger J. What do we currently know from in vivo bone strain measurements in humans?. Journal of Musculoskeletal and Neuronal Interactions 2011; 11: 8-20
  • 62 Qin YX, Rubin CT, McLeod KJ. Nonlinear dependance of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res 1998; 16: 482-489