Synthesis 2023; 55(16): 2570-2580
DOI: 10.1055/a-2058-0119
paper

I2/DTBP Promoted Synthesis of C3-Carbonylated Imidazopyridines from Chromones and 2-Aminopyridines via (3+2) Cycloaddition

Qiang Huang
a   School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. of China
b   The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, Guizhou 563006, P. R. of China
,
Lvjia Wu
a   School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. of China
,
Jihai Shi
a   School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. of China
,
Jiangdong Li
c   School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. of China
,
Wei Lu
a   School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. of China
,
Fushan Tang
a   School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. of China
b   The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, Guizhou 563006, P. R. of China
,
Lei Zhu
a   School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. of China
b   The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, Guizhou 563006, P. R. of China
,
Wenwu Zhong
d   Chongqing Medical and Pharmaceutical College, Chongqing 401331, P. R. of China
,
Changkuo Zhao
a   School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. of China
› Author Affiliations
Financial support from the Academic Cultivation and Innovation Exploration Special Project of Zunyi Medical University in 2018 (No. [2018]5772-013, CK-1149-011), the Young Talents Growth Project of the Higher Education Institutions of Guizhou Province (No. KY[2021]221) and the Natural Science Foundation of Guizhou Province (No. ZK[2022]592) is gratefully acknowledged.


Abstract

An I2/DTBP-promoted (3+2) cycloaddition reaction of 2-aminopyridines and chromones is reported. The work provides a simple and efficient approach to access imidazopyridines scaffold in moderate to good yields. I2/DTBP as an initiator and oxidant was used to realize the tandem (3+2) cycloaddition/oxidative aromatization. Available starting materials, excellent functional-group tolerance, potential drug activity of the products, and application in production on a gram scale are advantageous features of this strategy. Moreover, the obtained products provide a key active fragment for the synthesis of cabozantinib analogues, which has the potential to be developed as an anticancer agent.

Supporting Information



Publication History

Received: 21 December 2022

Accepted after revision: 20 March 2023

Accepted Manuscript online:
20 March 2023

Article published online:
19 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wang J, Wu H, Song G, Yang D, Huang J, Yao X, Qin H, Chen Z, Xu Z, Xu C. BioMed Res. Int. 2020; 4929053
    • 1b Iqbal MA, Husain A, Alam O, Khan SA, Ahmad A, Haider MR, Alam MA. Arch. Pharm. 2020; 353: e2000071
    • 1c Ramesh V, Rao GP. C. Russ. J. Gen. Chem. 2019; 89: 1491
    • 1d Sayeed IB, Vishnuvardhan M, Nagarajan A, Kantevari S, Kamal A. Bioorg. Chem. 2018; 80: 714
    • 1e He LJ, Yang DL, Chen HY, Huang JH, Zhang YJ, Qin HX, Wang JL, Tang DY, Chen ZZ. OncoTargets Ther. 2020; 13: 10111
    • 2a O’Malley T, Miller MJ, Alling T, Early JV, Wescott HA, Kumar A, Moraski GC, Masquelin T, Hipskind PA, Parish T. Antimicrob. Agents Chemother. 2018; 62: e02439
    • 2b Thakur A, Pereira G, Patel C, Chauhan V, Dhaked RK, Sharma A. J. Mol. Struct. 2020; 1206: 127686
    • 2c Mishra NP, Mohapatra S, Sahoo CR, Raiguru BP, Nayak S, Jena S, Padhy RN. J. Mol. Struct. 2021; 1246: 131183
    • 3a Khatun S, Singh A, Bader GN, Sofi FA. J. Biomol. Struct. Dyn. 2021; 39: 1
    • 3b Rucilova V, Swierczek A, Vanda D, Funk P, Lemrova B, Gawalska A, Bucki A, Nowak B, Zadrozna M, Pociecha K, Soural M, Wyska E, Pawlowski M, Chlon-Rzepa G, Zajdel P. Eur. J. Med. Chem. 2021; 209: 112854
    • 3c Vanda D, Zajdel P, Soural M. Eur. J. Med. Chem. 2019; 181: 111569
    • 4a Lovering F, Aevazelis C, Chang J, Dehnhardt C, Fitz L, Han S, Janz K, Lee J, Kaila N, McDonald J, Moore W, Moretto A, Papaioannou N, Richard D, Ryan MS, Wan ZK, Thorarensen A. ChemMedChem 2016; 11: 217
    • 4b Su JC, Chang CH, Wu SH, Shiau CW. J. Enzyme Inhib. Med. Chem. 2018; 33: 1248
    • 4c Dabiri Y, Gama-Brambila RA, Taskova K, Herold K, Reuter S, Adjaye J, Utikal J, Mrowka R, Wang J, Andrade-Navarro MA, Cheng X. iScience 2019; 12: 168
    • 4d Buonfiglio R, Prati F, Bischetti M, Cavarischia C, Furlotti G, Ombrato R. Molecules 2020; 25: 2163
    • 4e Damghani T, Moosavi F, Khoshneviszadeh M, Mortazavi M, Pirhadi S, Kayani Z, Saso L, Edraki N, Firuzi O. Sci. Rep. 2021; 11: 3644
    • 4f Gu X, Wang Y, Wang M, Wang J, Li N. J. Biomol. Struct. Dyn. 2021; 39: 63
    • 5a Wang Y, Li S, Wang X, Yao Y, Feng L, Ma C. RSC Adv. 2022; 12: 5919
    • 5b Acharya SS, Bhaumick P, Kumar R, Choudhury LH. ACS Omega 2022; 7: 18660
    • 5c Zhang Y, Chen R, Wang Z, Wang L, Ma Y. J. Org. Chem. 2021; 86: 6239
    • 5d Huang L, Yin W, Wang J, Gan C, Huang Y, Huang C, He Y. RSC Adv. 2019; 9: 2381
    • 5e Pandey K, Rangan K, Kumar A. J. Org. Chem. 2018; 83: 8026
    • 5f Iazzetti A, Cacchi S, Ciogli A, Demitri N, Fabrizi G, Ghirga F, Goggiamani A, Lamba D. Synthesis 2018; 50: 3513
    • 5g Hariss L, Hadir KB, El-Masri M, Roisnel T, Gree R, Hachem A. Beilstein J. Org. Chem. 2017; 13: 2115
    • 5h Wan J.-P, Hu D, Liu Y, Li L, Wen C. Tetrahedron Lett. 2016; 57: 2880
    • 5i Cheng C, Ge L, Lu X, Huang J, Huang H, Chen J, Cao W, Wu X. Tetrahedron 2016; 72: 6866
    • 5j Kamal A, Reddy CN, Satyaveni M, Chandrasekhar D, Nanubolu JB, Singarapu KK, Maurya RA. Chem. Commun. 2015; 51: 10475
    • 5k Qian G, Liu B, Tan Q, Zhang S, Xu B. Eur. J. Org. Chem. 2014; 4837
    • 5l Monir K, Kuma Bagdi A, Mishra S, Majee A, Hajra A. Adv. Synth. Catal. 2014; 356: 1105
    • 5m Wang Z, Sun G, Chen W, Zeng X, Wu H, Chen S, Chen Q. Chin. J. Org. Chem. 2021; 41: 3482
  • 6 Stanislas M, Stephan S. WO 2010084425 A1, 2010
  • 7 Reen GK, Kumar A, Sharma P. Beilstein J. Org. Chem. 2019; 15: 1612
    • 8a Wang S, Zhang S, Liu M, Zang J, Jiang G, Ji F. Org. Chem. Front. 2020; 7: 697
    • 8b Tashrifi Z, Mohammadi-Khanaposhtani M, Larijani B, Mahdavi M. Eur. J. Org. Chem. 2020; 269
    • 8c Semwal R, Ravi C, Kumar R, Meena R, Adimurthy S. J. Org. Chem. 2019; 84: 792
    • 8d Jin CA, Xu Q, Feng G, Jin Y, Zhang L. Chin. J. Org. Chem. 2018; 38: 775
    • 9a Reddy KR, Gupta AP, Das P. Asian J. Org. Chem. 2016; 5: 900
    • 9b Sultana F, Shaik SP, Kamal A, Alarifi A, Srivastava AK, Kamal A. Asian J. Org. Chem. 2017; 6: 890
  • 10 Zhan H, Zhao L, Liao J, Li N, Chen Q, Qiu S, Cao H. Adv. Synth. Catal. 2015; 357: 46
    • 12a Xu ZB, Gao YM, Wang SS, Zhang QL, Zhang LZ, Shen L. J. Org. Chem. 2022; 87: 3461
    • 12b Zhang M, Gong Y, Zhou W, Zhou Y, Liu XL. Org. Chem. Front. 2021; 8: 3968
    • 13a Zhang T, Yao W, Wan J.-P, Liu Y. Adv. Synth. Catal. 2021; 363: 4811
    • 13b Guo DG, Wang HJ, Zhou Y, Liu XL. Org. Biomol. Chem. 2022; 20: 4681
  • 14 Li W, Gembreska NR, Vogel AK, Ziegelmeyer EC, Cheng E, Wu F, Roberts LP, Vesoulis MM. Synlett 2020; 32: 539
  • 15 Chen K, Gao B, Shang Y, Du J, Gu Q, Wang J. Org. Biomol. Chem. 2017; 15: 8770
    • 16a Karmacharya U, Guragain D, Chaudhary P, Jee J.-G, Kim J.-A, Jeong B.-S. Int. J. Mol. Sci. 2021; 22: 9685
    • 16b Zhang J, Dai J, Lan X, Zhao Y, Yang F, Zhang H, Tang S, Liang G, Wang X, Tang Q. Eur. J. Med. Chem. 2022; 233: 114215
  • 17 Spadafora M, Postupalenko VY, Shvadchak VV, Klymchenko AS, Mely Y, Burger A, Benhida R. Tetrahedron 2009; 65: 7809
  • 18 Pleier AK, Glas H, Grosche M, Sirsch P, Thiel WR. Synthesis 2001; 55
  • 19 Wan JP, Hu D. q, Liu Y, Li LY, Wen CP. Tetrahedron Lett. 2016; 57: 2880