CC BY 4.0 · TH Open 2023; 07(02): e97-e104
DOI: 10.1055/a-2061-3311
Original Article

Antithrombotic Effects of the Novel Small-Molecule Factor XIa Inhibitor Milvexian in a Rabbit Arteriovenous Shunt Model of Venous Thrombosis

1   Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
,
Qiu Li
1   Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
,
Fuyong Du
1   Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
,
Neetu Shukla
2   Formulation, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
,
Andrea R. Nawrocki
1   Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
,
Madhu Chintala
1   Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
› Institutsangaben
Funding This study was supported by Bristol Myers Squibb and Janssen Research & Development, LLC. Editorial support was provided by Michael Henretty of Lumanity Communications Inc. and was funded by Bristol Myers Squibb and Janssen Global Services, LLC.


Abstract

Background Factor XIa (FXIa) is an emerging therapeutic target, and FXIa inhibition is a promising mechanism to improve therapeutic index over current anticoagulants. Milvexian (BMS-986177/JNJ-70033093) is an oral small-molecule FXIa inhibitor.

Objective Milvexian's antithrombotic efficacy was characterized in a rabbit arteriovenous (AV) shunt model of venous thrombosis and compared with the factor Xa inhibitor apixaban and the direct thrombin inhibitor dabigatran.

Methods The AV shunt model of thrombosis was conducted in anesthetized rabbits. Vehicle or drugs were administered as intravenous bolus plus a continuous infusion. Thrombus weight was the primary efficacy endpoint. Ex vivo activated partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin time (TT) were measured as the pharmacodynamic responses.

Results Milvexian dose dependently reduced thrombus weights by 34.3 ± 7.9, 51.6 ± 6.8 (p < 0.01; n = 5), and 66.9 ± 4.8% (p < 0.001; n = 6) versus vehicle at 0.25 + 0.17, 1.0 + 0.67, and 4.0 ± 2.68 mg/kg bolus + mg/kg/h infusion, respectively. Ex vivo clotting data supported a dose-dependent prolongation of aPTT (with 1.54-, 2.23-, and 3.12-fold increases from baseline upon the AV shunt start), but no changes in PT and TT. Dose-dependent inhibition in thrombus weight and clotting assays was also demonstrated for both apixaban and dabigatran as the references for the model validation.

Conclusion Results demonstrate that milvexian is an effective anticoagulant for prevention of venous thrombosis in the rabbit model, which supports the utility of milvexian in venous thrombosis, as seen in the phase 2 clinical study.

Authorship Details

Xinkang Wang contributed to the study design and execution, as well as drafted the manuscript. Qiu Li contributed the in-life study and data analysis. Fuyong Du contributed to the in-life study, ex vivo assays, and data analysis. Neetu Shukla provided the formulation support. Andrea R. Nawrocki contributed to the study design and manuscript revision. Madhu Chintala contributed to the study design, data interpretation, and manuscript revision. All the authors reviewed and approved the final manuscript for submission.




Publikationsverlauf

Eingereicht: 02. November 2022

Angenommen: 20. März 2023

Accepted Manuscript online:
23. März 2023

Artikel online veröffentlicht:
24. April 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392 (10159): 1736-1788
  • 2 Barra ME, Fanikos J, Connors JM, Sylvester KW, Piazza G, Goldhaber SZ. Evaluation of dose-reduced direct oral anticoagulant therapy. Am J Med 2016; 129 (11) 1198-1204
  • 3 Gailani D, Bane CE, Gruber A. Factor XI and contact activation as targets for antithrombotic therapy. J Thromb Haemost 2015; 13 (08) 1383-1395
  • 4 Al-Horani RA, Desai UR. Factor XIa inhibitors: a review of the patent literature. Expert Opin Ther Pat 2016; 26 (03) 323-345
  • 5 Grover SP, Mackman N. Intrinsic pathway of coagulation and thrombosis. Arterioscler Thromb Vasc Biol 2019; 39 (03) 331-338
  • 6 Salomon O, Steinberg DM, Zucker M, Varon D, Zivelin A, Seligsohn U. Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis. Thromb Haemost 2011; 105 (02) 269-273
  • 7 Preis M, Hirsch J, Kotler A. et al. Factor XI deficiency is associated with lower risk for cardiovascular and venous thromboembolism events. Blood 2017; 129 (09) 1210-1215
  • 8 Meijers JC, Tekelenburg WL, Bouma BN, Bertina RM, Rosendaal FR. High levels of coagulation factor XI as a risk factor for venous thrombosis. N Engl J Med 2000; 342 (10) 696-701
  • 9 Yang DT, Flanders MM, Kim H, Rodgers GM. Elevated factor XI activity levels are associated with an increased odds ratio for cerebrovascular events. Am J Clin Pathol 2006; 126 (03) 411-415
  • 10 Büller HR, Bethune C, Bhanot S. et al; FXI-ASO TKA Investigators. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med 2015; 372 (03) 232-240
  • 11 Verhamme P, Yi BA, Segers A. et al; ANT-005 TKA Investigators. Abelacimab for prevention of venous thromboembolism. N Engl J Med 2021; 385 (07) 609-617
  • 12 Weitz JI, Bauersachs R, Becker B. et al. Effect of osocimab in preventing venous thromboembolism among patients undergoing knee arthroplasty: the FOXTROT randomized clinical trial. JAMA 2020; 323 (02) 130-139
  • 13 Rosen ED, Gailani D, Castellino FJ. FXI is essential for thrombus formation following FeCl3-induced injury of the carotid artery in the mouse. Thromb Haemost 2002; 87 (04) 774-776
  • 14 Wang X, Cheng Q, Xu L. et al. Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice. J Thromb Haemost 2005; 3 (04) 695-702
  • 15 Wang X, Smith PL, Hsu MY. et al. Effects of factor XI deficiency on ferric chloride-induced vena cava thrombosis in mice. J Thromb Haemost 2006; 4 (09) 1982-1988
  • 16 Gailani D, Lasky NM, Broze Jr GJ. A murine model of factor XI deficiency. Blood Coagul Fibrinolysis 1997; 8 (02) 134-144
  • 17 Schumacher WA, Seiler SE, Steinbacher TE. et al. Antithrombotic and hemostatic effects of a small molecule factor XIa inhibitor in rats. Eur J Pharmacol 2007; 570 (1–3): 167-174
  • 18 Yamashita A, Nishihira K, Kitazawa T. et al. Factor XI contributes to thrombus propagation on injured neointima of the rabbit iliac artery. J Thromb Haemost 2006; 4 (07) 1496-1501
  • 19 Wong PC, Quan ML, Watson CA. et al. In vitro, antithrombotic and bleeding time studies of BMS-654457, a small-molecule, reversible and direct inhibitor of factor XIa. J Thromb Thrombolysis 2015; 40 (04) 416-423
  • 20 Gruber A, Hanson SR. Factor XI-dependence of surface- and tissue factor-initiated thrombus propagation in primates. Blood 2003; 102 (03) 953-955
  • 21 Tucker EI, Marzec UM, White TC. et al. Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor XI. Blood 2009; 113 (04) 936-944
  • 22 Dilger AK, Pabbisetty KB, Corte JR. et al. Discovery of milvexian, a high-affinity, orally bioavailable inhibitor of factor XIa in clinical studies for antithrombotic therapy. J Med Chem 2022; 65 (03) 1770-1785
  • 23 Weitz JI, Strony J, Ageno W. et al; AXIOMATIC-TKR Investigators. Milvexian for the prevention of venous thromboembolism. N Engl J Med 2021; 385 (23) 2161-2172
  • 24 Wong PC, Crain EJ, Bozarth JM. et al. Milvexian, an orally bioavailable, small-molecule, reversible, direct inhibitor of factor XIa: In vitro studies and in vivo evaluation in experimental thrombosis in rabbits. J Thromb Haemost 2022; 20 (02) 399-408
  • 25 Wong PC, Crain EJ, Xin B. et al. Apixaban, an oral, direct and highly selective factor Xa inhibitor: in vitro, antithrombotic and antihemostatic studies. J Thromb Haemost 2008; 6 (05) 820-829
  • 26 Herzog E, Kaspereit FJ, Krege W. et al. Thrombotic safety of prothrombin complex concentrate (Beriplex P/N) for dabigatran reversal in a rabbit model. Thromb Res 2014; 134 (03) 729-736
  • 27 Wong PC, Quan ML, Crain EJ, Watson CA, Wexler RR, Knabb RM. Nonpeptide factor Xa inhibitors: I. Studies with SF303 and SK549, a new class of potent antithrombotics. J Pharmacol Exp Ther 2000; 292 (01) 351-357
  • 28 Wong PC, Watson CA, Crain EJ. Arterial antithrombotic and bleeding time effects of apixaban, a direct factor Xa inhibitor, in combination with antiplatelet therapy in rabbits. J Thromb Haemost 2008; 6 (10) 1736-1741
  • 29 Wong PC, Crain EJ, Watson CA, Xin B. Favorable therapeutic index of the direct factor Xa inhibitors, apixaban and rivaroxaban, compared with the thrombin inhibitor dabigatran in rabbits. J Thromb Haemost 2009; 7 (08) 1313-1320
  • 30 Ayyoub S, Orriols R, Oliver E, Ceide OT. Thrombosis models: an overview of common in vivo and in vitro models of thrombosis. Int J Mol Sci 2023; 24 (03) 2569
  • 31 Alkarithi G, Duval C, Shi Y, Macrae FL, Ariëns RAS. Thrombus structural composition in cardiovascular disease. Arterioscler Thromb Vasc Biol 2021; 41 (09) 2370-2383
  • 32 Wong PC, Pinto DJ, Zhang D. Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor. J Thromb Thrombolysis 2011; 31 (04) 478-492
  • 33 Wienen W, Stassen JM, Priepke H, Ries UJ, Hauel N. Antithrombotic and anticoagulant effects of the direct thrombin inhibitor dabigatran, and its oral prodrug, dabigatran etexilate, in a rabbit model of venous thrombosis. J Thromb Haemost 2007; 5 (06) 1237-1242
  • 34 Heitmeier S, Visser M, Tersteegen A. et al. Pharmacological profile of asundexian, a novel, orally bioavailable inhibitor of factor XIa. J Thromb Haemost 2022; 20 (06) 1400-1411
  • 35 Cheung KS, Leung WK. Gastrointestinal bleeding in patients on novel oral anticoagulants: Risk, prevention and management. World J Gastroenterol 2017; 23 (11) 1954-1963
  • 36 Sterne JA, Bodalia PN, Bryden PA. et al. Oral anticoagulants for primary prevention, treatment and secondary prevention of venous thromboembolic disease, and for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis and cost-effectiveness analysis. Health Technol Assess 2017; 21 (09) 1-386