Synthesis 2024; 56(10): 1576-1584
DOI: 10.1055/a-2062-8680
paper
C–H Bond Functionalization of Heterocycles

Oxidative C–N Bond Cleavage of Cyclic Amines with Ammonium Hypochlorite

Yuya Kaieda
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
,
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
,
Hiroyuki Toguchi
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
,
Natsumi Hanazawa
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
b   Tsukuba Research Laboratories, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
,
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
,
Osamu Onomura
a   Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
› Author Affiliations
This research was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI: 22K06528, 22K15255, and 19K05459).


Abstract

An oxidative C–N bond cleavage of cyclic amines has been developed under metal-free conditions, providing N-Cl-ω-amino acids in moderate to excellent yields. The reactions proceed by using tetramethylammonium hypochlorite (TMAOCl) as an oxidant even on a gram scale. Hofmann–Löffler–Freytag-type reaction of N-Cl-ω-amino acids to form cyclic amino acids has also been demonstrated.

Supporting Information



Publication History

Received: 31 January 2023

Accepted after revision: 27 March 2023

Accepted Manuscript online:
27 March 2023

Article published online:
24 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Campos KR. Chem. Soc. Rev. 2007; 36: 1069
    • 1b Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10092
    • 1c Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
    • 1d Seidel D. Acc. Chem. Res. 2015; 48: 317
    • 1e Cheng M.-X, Yang S.-D. Synlett 2017; 28: 159
    • 1f He Y, Zheng Z, Yang J, Zhang X, Fan X. Org. Chem. Front. 2021; 8: 4582
    • 2a Shawcross AP, Stanforth SP. J. Heterocycl. Chem. 1990; 27: 367
    • 2b Han G, McIntosh MC, Weinreb SM. Tetrahedron Lett. 1994; 35: 5813
    • 2c Van Betsbrugge J, Van Den Nest W, Verheyden P, Tourwé D. Tetrahedron 1998; 54: 1753
    • 2d Honda T, Ishikawa F. Chem. Commun. 1999; 1065
    • 2e Azzena U, Demartis S, Pilo L, Piras E. Tetrahedron 2000; 56: 8375
    • 2f Zhu Q, Yuan Q, Chen M, Guo M, Huang H. Angew. Chem. Int. Ed. 2017; 56: 5101
    • 2g Bugaenko DI, Yurovskaya MA, Karchava AV. Org. Lett. 2018; 20: 6389
    • 2h Kim Y, Heo J, Kim D, Chang S, Seo S. Nat. Commun. 2020; 11: 4761
    • 3a Seto M, Aikawa K, Miyamoto N, Aramaki Y, Kanzaki N, Takashima K, Kuze Y, Iizawa Y, Baba M, Shiraishi M. J. Med. Chem. 2006; 49: 2037
    • 3b Sun H, Tawa G, Wallqvist A. Drug Discovery Today 2012; 17: 310
    • 3c Tamayo NA, Bo Y, Gore V, Ma V, Nishimura N, Tang P, Deng H, Klionsky L, Lehto SG, Wang W, Youngblood B, Chen J, Correll TL, Bartberger MD, Gavva NR, Norman MH. J. Med. Chem. 2012; 55: 1593
    • 3d Feng Y, Luo Z, Sun G, Chen M, Lai J, Lin W, Goldmann S, Zhang L, Wang Z. Org. Process Res. Dev. 2017; 21: 648
    • 4a Adams R, Leonard NJ. J. Am. Chem. Soc. 1944; 66: 257
    • 4b Castaño AM, Cuerva JM, Echavarren AM. Tetrahedron Lett. 1994; 35: 7435
    • 4c Roque JB, Kuroda Y, Göttemann LT, Sarpong R. Nature 2018; 564: 244
    • 4d Wang F, He Y, Tian M, Zhang X, Fan X. Org. Lett. 2018; 20: 864
    • 5a Ito R, Umezawa N, Higuchi T. J. Am. Chem. Soc. 2005; 127: 834
    • 5b Kaname M, Yoshifuji S, Sashida H. Tetrahedron Lett. 2008; 49: 2786
    • 5c Liu P, Liu Y, Wong E.-L, Xiang S, Che C.-M. Chem. Sci. 2011; 2: 2187
    • 5d Xia X.-F, Shu X.-Z, Ji K.-G, Shaukat A, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2011; 76: 342
    • 5e Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Nature 2016; 537: 214
    • 5f Liu R.-H, He Y.-H, Yu W, Zhou B, Han B. Org. Lett. 2019; 21: 4590
    • 6a Cocquet G, Ferroud C, Guy A. Tetrahedron 2000; 56: 2975
    • 6b Wang H, Man Y, Wang K, Wan X, Tong L, Li N, Tang B. Chem. Commun. 2018; 54: 10989
    • 6c Fu Y, Shi C.-Z, Xu Q.-S, Du Z, Huo C. Green Chem. 2020; 22: 2264
    • 6d Cybularczyk-Cecotka M, Kamińska A, Jopek Z, Giedyk M. Eur. J. Org. Chem. 2022; e202200913
  • 7 Wang F, Frankowski KJ. J. Org. Chem. 2022; 87: 1173
  • 8 Nishiguchi Y, Tomizuka A, Moriyama K. Adv. Synth. Catal. 2020; 362: 5518
  • 9 Sun Z, Ji H, Shao Y, He K, Zhang Y, Yuan Y, Jia X. J. Org. Chem. 2019; 84: 12292
    • 10a He K, Li P, Zhang S, Chen Q, Ji H, Yuan Y, Jia X. Chem. Commun. 2018; 54: 13232
    • 10b He Y, Zheng Z, Liu Y, Qiao J, Zhang X, Fan X. Org. Lett. 2019; 21: 1676
    • 10c He Y, Zheng Z, Liu Y, Qiao J, Zhang X, Fan X. Chem. Commun. 2019; 55: 12372
    • 10d He Y, Yang J, Zhang X, Fan X. Org. Chem. Front. 2021; 8: 5118
    • 11a Stevens RV, Chapman KT, Stubbs CA, Tam WW, Albizati KF. Tetrahedron Lett. 1982; 23: 4647
    • 11b Wuts PG. M, Cabaj JE, Havens JL. J. Org. Chem. 1994; 59: 6470
    • 11c Kirihara M, Okada T, Sugiyama Y, Akiyoshi M, Matsunaga T, Kimura Y. Org. Process Res. Dev. 2017; 21: 1925
  • 12 Anelli PL, Biffi C, Montanari F, Quici S. J. Org. Chem. 1987; 52: 2559
    • 13a Banfi S, Montanari F, Quici S. J. Org. Chem. 1989; 54: 1850
    • 13b Mirafzal GA, Lozeva AM. Tetrahedron Lett. 1998; 39: 7263
  • 14 Tetramethyl ammonium solution contains Me4NOCl (14.7 wt%; available chlorine: 8.29 wt%), Me4NCl (12.9 wt%), and Me4NOH (2 wt%) (pH 12.9).
    • 15a Hsu C.-PS. US Patent US20050176603 A, 2005
    • 15b Shimoda A, Yoshikawa Y, Sato T, Negishi T. JP Patent JP202190051 A, 2021
  • 16 Onomura O, Kuriyama M, Yamamoto K, Kikuchi N, Uehara A, Kusumoto Y, Moriwaki M, Kadota H. JP Patent JP2020200287, 2020
  • 17 Stateman LM, Nakahuku KM, Nagib DA. Synthesis 2018; 50: 1569
    • 18a Shono T, Matsumura Y, Kanazawa T. Tetrahedron Lett. 1983; 24: 1259
    • 18b Shono T, Matsumura Y, Kanazawa T, Habuka M, Uchida K, Toyoda K. J. Chem. Res., Synop. 1984; 320
    • 18c Novaes LF. T, Ho JS. K, Mao K, Liu K, Tanwar M, Neurock M, Villemure E, Terrett JA, Lin S. J. Am. Chem. Soc. 2022; 144: 1187
  • 19 Yoshikawa Y, Shimoda A, Negishi T, Okishio N, Higashino S. JP Patent JP6901998 B2, 2021
  • 20 Takasu N, Oisaki K, Kanai M. Org. Lett. 2013; 15: 1918
  • 21 Zhang H, Daněk O, Makarov D, Rádl S, Kim D, Ledvinka J, Vychodilová K, Hlaváč J, Lefèbre J, Denis M, Rademacher C, Ménová C. ACS Med. Chem. Lett. 2021; 13: 935
  • 22 Gediya SK, Vyas VK, Clarkson GJ, Wills M. Org. Lett. 2021; 23: 7803
  • 23 Matsumura Y, Demizu Y, Onomura O. JP Patent JP5126856 B2, 2013
  • 24 Tang Y.-Q, Lu J.-M, Wang X.-R, Shao L.-X. Tetrahedron 2010; 66: 7970
  • 25 Qi C, Hasenmaile F, Gandon V, Leboeuf D. ACS Catal. 2018; 8: 1734
  • 26 Aycock RA, Vogt DB, Jui NT. Chem. Sci. 2017; 8: 7998
  • 27 Kim H, Lee C. Org. Lett. 2011; 13: 2050