Subscribe to RSS
DOI: 10.1055/a-2069-4495
Visible-Light-Responsive Nano CuO/ZnO Photocatalyst for Chan–Lam Coupling Reaction and Aerobic C(sp3)–H Bond Oxidation
We thank the Shiraz University council for their support in the form of a yearly grant.
Abstract
When it comes to heterogeneous photocatalysts, semiconductors are the best candidate with a high potential to respond in visible-light regions. In this study, semiconductor p-n heterojunction, nano CuO/ZnO, was synthesized via a simple, sustainable, and low-cost approach. Photocatalytic activity of the synthesized material with a 2.02 eV band gap was investigated in the Chan–Lam coupling reaction and C(sp3)–H bond oxidation of alkyl aromatic compounds under visible-light irradiation in aqueous solution. In the case of the Chan–Lam coupling reaction, various derivatives of aniline and arylboronic acid successfully took part in the reaction, delivering the desired products in 57–89% yields. In addition, nano CuO/ZnO photocatalyst showed high efficiency in the C(sp3)–H bond oxidation of alkyl aromatic compounds under air as a green oxidant. Noticeably, the photocatalyst showed high performance in the large-scale synthesis of desired products and maintained activity after several uses.
Key words
semiconductor - heterogeneous photocatalyst - Chan–Lam reaction - C(sp3)–H bond oxidation - gram-scale synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2069-4495.
- Supporting Information
Publication History
Received: 26 December 2022
Accepted after revision: 05 April 2023
Accepted Manuscript online:
05 April 2023
Article published online:
04 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bell JD, Murphy JA. Chem. Soc. Rev. 2021; 50: 9540
- 2 Bobo MV, Kuchta JJ, Vannucci AK. Org. Biomol. Chem. 2021; 19: 4816
- 3 Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, Cai Z. Appl. Sci. 2019; 9: 2489
- 4 Lee KM, Lai CW, Ngai KS, Juan JC. Water Res. 2016; 88: 428
- 5a Kochuveedu ST, Jang YH, Kim DH. Chem. Soc. Rev. 2013; 42: 8467
- 5b Elemike EE, Onwudiwe DC, Wei L, Chaogang L, Zhiwei Z. Sol. Energy Mater. Sol. Cells 2019; 201: 110106
- 5c Hosseini-Sarvari M, Bazyar Z. ChemistrySelect 2018; 3: 1898
- 5d Lee SJ, Jung HJ, Koutavarapu R, Lee SH, Arumugam M, Kim JH, Choi MY. Appl. Surf. Sci. 2019; 496: 143665
- 6a Nemiwal M, Zhang TC, Kumar D. Sci. Total Environ. 2021; 767: 144896
- 6b Kosco J, Bidwell M, Cha H, Martin T, Howells CT, Sachs M, Anjum DH, Gonzalez Lopez S, Zou L, Wadsworth A. Nat. Mater. 2020; 19: 559
- 6c Liang C, Guo H, Zhang L, Ruan M, Niu C.-G, Feng H.-P, Wen X.-J, Tang N, Liu H.-Y, Zeng G.-M. Chem. Eng. J. 2019; 372: 12
- 7a Beletskaya IP, Cheprakov AV. Organometallics 2012; 31: 7753
- 7b Bose S, Dutta S, Koley D. ACS Catal. 2022; 12: 1461
- 7c Doyle MG, Lundgren RJ. Chem. Commun. 2021; 57: 2724
- 7d Sarmah D, Saikia R, Bora U. Tetrahedron 2022; 104: 132567
- 7e Vijayan A, Rao DN, Radhakrishnan K, Lam PY, Das P. Synthesis 2021; 53: 805
- 7f West MJ, Fyfe JW, Vantourout JC, Watson AJ. Chem. Rev. 2019; 119: 12491
- 8a Chen JQ, Li JH, Dong ZB. Adv. Synth. Catal. 2020; 362: 3311
- 8b Han Y, Zhang M, Zhang Y.-Q, Zhang Z.-H. Green Chem. 2018; 20: 4891
- 8c Liu X, Dong ZB. J. Org. Chem. 2019; 84: 11524
- 8d Chen JQ, Liu X, Guo J, Dong ZB. Eur. J. Org. Chem. 2020; 2414
- 8e Wu YX, Wang X, Li JH, Xiao HQ, Dong ZB. Eur. J. Org. Chem. 2022; e202200707
- 9 Yoo WJ, Tsukamoto T, Kobayashi S. Angew. Chem. Int. Ed. 2015; 54: 6587
- 10 Di J.-Q, Zhang M, Chen Y.-X, Wang J.-X, Geng S.-S, Tang J.-Q, Zhang Z.-H. Green Chem. 2021; 23: 1041
- 11a Sterckx H, Morel B, Maes BU. Angew. Chem. Int. Ed. 2019; 58: 7946
- 11b Ma Y, Gao F, Xiao W, Li N, Li S, Yu B, Chen X. Chin. Chem. Lett. 2022; 33: 4395
- 12 Gandeepan P, Ackermann L. Chem 2018; 4: 199
- 13 Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
- 14a Chen L, Tang J, Song L.-N, Chen P, He J, Au C.-T, Yin S.-F. Appl. Catal. B: Environ. 2019; 242: 379
- 14b Schilling W, Riemer D, Zhang Y, Hatami N, Das S. ACS Catal. 2018; 8: 5425
- 14c Geng P, Tang Y, Pan G, Wang W, Hu J, Cai Y. Green Chem. 2019; 21: 6116
- 15a Tavakolian M, Keshavarz K, Hosseini-Sarvari M. Mol. Catal. 2021; 514: 111810
- 15b Firoozi S, Hosseini-Sarvari M. J. Org. Chem. 2021; 86: 2117
- 15c Hosseini-Sarvari M, Akrami Z. Catal. Sci. Technol. 2021; 11: 956
- 16 Yuan B, Zhang B, Wang Z, Lu S, Li J, Liu Y, Li C. Chin. J. Catal. 2017; 38: 440
- 17 Liu F, Xiao C.-X, Meng L.-H, Chen L, Zhang Q, Liu J.-B, Shen S, Guo J.-K, Au C.-T, Yin S.-F. ACS Sustainable Chem. Eng. 2020; 8: 1302
- 18 Uygur M, Kuhlmann JH, Pérez-Aguilar MC, Piekarski DG, Mancheño OG. Green Chem. 2021; 23: 3392
- 19 Shibata T, Akino M, Sekine A, Ito M. Bull. Chem. Soc. Jpn. 2022; 95: 768
- 20 Li J, He J, Si C, Li M, Han Q, Wang Z, Zhao J. J. Catal. 2020; 392: 244
- 21 Hardouin Duparc VR, Bano GL, Schaper F. ACS Catal. 2018; 8: 7308
- 22 Jia X, Peng P, Cui J, Xin N, Huang X. Asian J. Org. Chem. 2018; 7: 1093
- 23 Sharma H, Mahajan H, Jamwal B, Paul S. Catal. Commun. 2018; 107: 68