Synthesis 2023; 55(18): 2817-2832
DOI: 10.1055/a-2072-2617
short review
Special Issue Electrochemical Organic Synthesis

Accelerated Electrosynthesis Development Enabled by High-Throughput Experimentation

Huijie Chen
a   College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310027, Zhejiang, P. R. of China
,
Yiming Mo
a   College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310027, Zhejiang, P. R. of China
b   ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. of China
› Author Affiliations
This work was supported by the National Key R & D Program of China (No. 2021YFA1502700) and National Natural Science Foundation of China (No. 22108242).


Abstract

Electrochemical synthesis has recently emerged as an environmentally benign method for synthesizing value-added fine chemicals. Its unique reactivity has attracted significant interests of synthetic chemists to develop new redox chemistries. However, compared to conventional chemistry, the increased complexity caused by electrode materials, supporting electrolytes, and setup configurations create obstacles for efficient reaction discovery and optimization. The recent increasing adoption of high-throughput experimentation (HTE) in synthetic chemistry significantly expedites the synthesis development. Considering the potential of implementing HTE in electrosynthesis to tackle the challenges of increased parameter space, this short review aims at providing recent advances in the HTE technology for electrosynthesis, including electrocatalysts screening, device miniaturization, electroanalytical methods, artificial intelligence, and system integration. The discussed contents also cover some topics in HTE electrochemistry for areas other than synthetic chemistry, hoping to spark some inspirations for readers to use interdisciplinary techniques to solve challenges in synthetic electrochemistry.

1 Introduction

2 Parallelized Reaction Screening

3 High-Throughput Screening for Electrocatalysts

4 Miniaturization of Screening Devices

5 Analytical Methods for Electrosynthesis Screening

6 Artificial Intelligence for High-Throughput Screening

7 Integrated Screening Systems

8 Conclusion and Outlook



Publication History

Received: 16 December 2022

Accepted after revision: 12 April 2023

Accepted Manuscript online:
12 April 2023

Article published online:
16 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
  • 2 Davy H. Philos. Trans. R. Soc. London 1808; 1
  • 3 Moissan H. C. R. Hebd. Séances Acad. Sci. 1886; 102: 1543
  • 4 Kolbe H. J. Prakt. Chem. 1847; 41: 137
  • 5 Danly DE. J. Electrochem. Soc. 1984; 131: 435C
  • 6 Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
  • 7 Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS. Nature 2016; 533: 77
  • 8 Zeng L, Li H, Hu J, Zhang D, Hu J, Peng P, Wang S, Shi R, Peng J, Pao C.-W, Chen J.-L, Lee J.-F, Zhang H, Chen Y.-H, Lei A. Nat. Catal. 2020; 3: 438
  • 9 Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087
  • 10 Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey TJ, Anderson SL, Neurock M, Minteer SD, Baran PS. Science 2019; 363: 838
  • 11 Xiang J, Shang M, Kawamata Y, Lundberg H, Reisberg SH, Chen M, Mykhailiuk P, Beutner G, Collins MR, Davies A, Del Bel M, Gallego GM, Spangler JE, Starr J, Yang S, Blackmond DG, Baran PS. Nature 2019; 573: 398
  • 12 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 13 Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
  • 14 Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
  • 15 Atobe M, Tateno H, Matsumura Y. Chem. Rev. 2018; 118: 4541
  • 16 Perry SC, de León CP, Walsh FC. J. Electrochem. Soc. 2020; 167: 155525
  • 17 Wills AG, Charvet S, Battilocchio C, Scarborough CC, Wheelhouse KM. P, Poole DL, Carson N, Vantourout JC. Org. Process Res. Dev. 2021; 25: 2587
  • 18 Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
  • 19 Mo Y, Rughoobur G, Nambiar AM. K, Zhang K, Jensen KF. Angew. Chem. Int. Ed. 2020; 59: 20890
  • 20 Rein J, Annand JR, Wismer MK, Fu J, Siu JC, Klapars A, Strotman NA, Kalyani D, Lehnherr D, Lin S. ACS Cent. Sci. 2021; 7: 1347
  • 21 Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang X, Li X, Alston BM, Li B, Clowes R, Rankin N, Harris B, Sprick RS, Cooper AI. Nature 2020; 583: 237
  • 22 Coley CW, Thomas DA, Lummiss JA. M, Jaworski JN, Breen CP, Schultz V, Hart T, Fishman JS, Rogers L, Gao H, Hicklin RW, Plehiers PP, Byington J, Piotti JS, Green WH, Hart AJ, Jamison TF, Jensen KF. Science 2019; 365: eaax1566
  • 23 Buitrago Santanilla A, Regalado EL, Pereira T, Shevlin M, Bateman K, Campeau L.-C, Schneeweis J, Berritt S, Shi Z.-C, Nantermet P, Liu Y, Helmy R, Welch CJ, Vachal P, Davies IW, Cernak T, Dreher SD. Science 2015; 347: 49
  • 24 Roch LM, Häse F, Kreisbeck C, Tamayo-Mendoza T, Yunker LP. E, Hein JE, Aspuru-Guzik A. Sci. Robot. 2018; 3: eaat5559
  • 25 Seifrid M, Pollice R, Aguilar-Granda A, Morgan Chan Z, Hotta K, Ser CT, Vestfrid J, Wu TC, Aspuru-Guzik A. Acc. Chem. Res. 2022; 55: 2454
  • 26 Shi Y, Prieto PL, Zepel T, Grunert S, Hein JE. Acc. Chem. Res. 2021; 54: 546
  • 27 Eyke NS, Koscher BA, Jensen KF. Trends Chem. 2021; 3: 120
  • 28 Shields BJ, Stevens J, Li J, Parasram M, Damani F, Alvarado JI. M, Janey JM, Adams RP, Doyle AG. Nature 2021; 590: 89
  • 29 Mahjour B, Shen Y, Liu W, Cernak T. Nature 2020; 580: 71
  • 30 Rohrbach S, Šiaučiulis M, Chisholm G, Pirvan P.-A, Saleeb M, Mehr SH. M, Trushina E, Leonov AI, Keenan G, Khan A, Hammer A, Cronin L. Science 2022; 377: 172
  • 31 Granda JM, Donina L, Dragone V, Long D.-L, Cronin L. Nature 2018; 559: 377
  • 32 Angello NH, Rathore V, Beker W, Wołos A, Jira ER, Roszak R, Wu TC, Schroeder CM, Aspuru-Guzik A, Grzybowski BA, Burke MD. Science 2022; 378: 399
  • 33 Owen J, Kuznecovs M, Bhamji R, William N, Domenech-Garcia N, Hesler M, Knoll T, Kohl Y, Nelson A, Kapur N. Rev. Sci. Instrum. 2020; 91: 025002
  • 34 Muster TH, Trinchi A, Markley TA, Lau D, Martin P, Bradbury A, Bendavid A, Dligatch S. Electrochim. Acta 2011; 56: 9679
  • 35 Rein J, Lin S, Kalyani D, Lehnherr D. In ACS Symposium Series, Vol. 1419. Emmert MH, Jouffroy M, Leitch DC. American Chemical Society; Washington DC: 2022: 167
  • 36 Pereira DA, Williams JA. Br. J. Pharmacol. 2007; 152: 53
  • 37 Peil KP, Neithamer DR, Patrick DW, Wilson BE, Tucker CJ. Macromol. Rapid Commun. 2004; 25: 119
  • 38 Mayr LM, Bojanic D. Curr. Opin. Pharmacol. 2009; 9: 580
  • 39 Mennen SM, Alhambra C, Allen CL, Barberis M, Berritt S, Brandt TA, Campbell AD. Org. Process Res. Dev. 2019; 23: 1213
  • 40 Godfrey AG, Masquelin T, Hemmerle H. Drug Discov. Today 2013; 18: 795
  • 41 Selekman JA, Qiu J, Tran K, Stevens J, Rosso V, Simmons E, Xiao Y, Janey J. Annu. Rev. Chem. Biomol. Eng. 2017; 8: 525
  • 42 Perera D, Tucker JW, Brahmbhatt S, Helal CJ, Chong A, Farrell W, Richardson P, Sach NW. Science 2018; 359: 429
  • 43 Siu T, Li W, Yudin AK. J. Comb. Chem. 2000; 2: 545
  • 44 Gütz C, Klöckner B, Waldvogel SR. Org. Process Res. Dev. 2016; 20: 26
  • 45 Siu JC, Fu N, Lin S. Acc. Chem. Res. 2020; 53: 547
  • 46 Jutand A. Chem. Rev. 2008; 108: 2300
  • 47 Kawamata Y, Hayashi K, Carlson E, Shaji S, Waldmann D, Simmons BJ, Edwards JT, Zapf CW, Saito M, Baran PS. J. Am. Chem. Soc. 2021; 143: 16580
  • 48 Zhang H, Chen L, Oderinde MS, Edwards JT, Kawamata Y, Baran PS. Angew. Chem. Int. Ed. 2021; 60: 20700
  • 49 Zheng H, Liu C.-H, Guo S.-Y, He G.-C, Min X.-T, Zhou B.-C, Ji D.-W, Hu Y.-C, Chen Q.-A. Nat. Commun. 2022; 13: 3496
  • 50 Gayathri P, Pillai KC, Senthil Kumar A. J. Phys. Chem. C 2019; 123: 30283
  • 51 Fukazawa A, Minoshima J, Tanaka K, Hashimoto Y, Kobori Y, Sato Y, Atobe M. ACS Sustainable Chem. Eng. 2019; 7: 11050
  • 52 Cai C.-Y, Shu X.-M, Xu H.-C. Nat. Commun. 2019; 10: 4953
  • 53 Cotty S, Jeon J, Elbert J, Jeyaraj VS, Mironenko AV, Su X. Sci. Adv. 2022; 8: eade3094
  • 54 Tolman CA, Jesson JP. Science 1973; 181: 501
  • 55 Badalyan A, Stahl SS. Nature 2016; 535: 406
  • 56 Rafiee M, Miles KC, Stahl SS. J. Am. Chem. Soc. 2015; 137: 14751
  • 57 Das A, Stahl SS. Angew. Chem. Int. Ed. 2017; 56: 8892
  • 58 Saito M, Kawamata Y, Meanwell M, Navratil R, Chiodi D, Carlson E, Hu P, Chen L, Udyavara S, Kingston C, Tanwar M, Tyagi S, McKillican BP, Gichinga MG, Schmidt MA, Eastgate MD, Lamberto M, He C, Tang T, Malapit CA, Sigman MS, Minteer SD, Neurock M, Baran PS. J. Am. Chem. Soc. 2021; 143: 7859
  • 59 Kawamata Y, Yan M, Liu Z, Bao D.-H, Chen J, Starr JT, Baran PS. J. Am. Chem. Soc. 2017; 139: 7448
  • 60 Harwood SJ, Palkowitz MD, Gannett CN, Perez P, Yao Z, Sun L, Abruña HD, Anderson SL, Baran PS. Science 2022; 375: 745
  • 61 Kumar GS, Peshkov A, Brzozowska A, Nikolaienko P, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 6513
  • 62 Zhu C, Kale AP, Yue H, Rueping M. JACS Au 2021; 1: 1057
  • 63 Franke MC, Longley VR, Rafiee M, Stahl SS, Hansen EC, Weix DJ. ACS Catal. 2022; 12: 12617
  • 64 Barrett AJ. A, Brunner BF. M, Cheung CP. L, Kubiak DC. P, Lee EG. L, Miller FC. J, Waldie GK. M, Zhanaidarova HA. In Energy and Environment Series . Robert M, Costentin C, Daasbjerg K. Royal Society of Chemistry; Cambridge: 2020: 1
  • 65 Siu T, Yekta S, Yudin AK. J. Am. Chem. Soc. 2000; 122: 11787
  • 66 Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. J. Chem. Educ. 2018; 95: 197
  • 67 Huang H, Strater ZM, Rauch M, Shee J, Sisto TJ, Nuckolls C, Lambert TH. Angew. Chem. Int. Ed. 2019; 58: 13318
  • 68 Ruccolo S, Brito G, Christensen M, Itoh T, Mattern K, Stone K, Strotman NA, Sun AC. J. Am. Chem. Soc. 2022; 144: 22582
  • 69 Cotty S, Jeon J, Elbert J, Jeyaraj VS, Mironenko AV, Su X. Sci. Adv. 2022; 8: eade3094
  • 70 Cornils B, Herrmann WA. J. Catal. 2003; 216: 23
  • 71 Palkowitz MD, Laudadio G, Kolb S, Choi J, Oderinde MS, Ewing TE.-H, Bolduc PN, Chen T, Zhang H, Cheng PT. W, Zhang B, Mandler MD, Blasczak VD, Richter JM, Collins MR, Schioldager RL, Bravo M, Dhar TG. M, Vokits B, Zhu Y, Echeverria P.-G, Poss MA, Shaw SA, Clementson S, Petersen NN, Mykhailiuk PK, Baran PS. J. Am. Chem. Soc. 2022; 144: 17709
  • 72 Lai Y, Jones RJ. R, Wang Y, Zhou L, Gregoire JM. ACS Comb. Sci. 2019; 21: 692
  • 73 Xiang C, Suram SK, Haber JA, Guevarra DW, Soedarmadji E, Jin J, Gregoire JM. ACS Comb. Sci. 2014; 16: 47
  • 74 Liu X, Zou P, Song L, Zang B, Yao B, Xu W, Li F, Schroers J, Huo J, Wang J.-Q. ACS Catal. 2022; 12: 3789
  • 75 Roy D, Mandal SC, Pathak B. ACS Appl. Mater. Interfaces 2021; 13: 56151
  • 76 Liu X, Liu B, Ding J, Deng Y, Han X, Zhong C, Hu W. Adv. Funct. Mater. 2022; 32: 2107862
  • 77 Sundermann A, Gerlach O. Catalysts 2016; 6: 23
  • 78 Battersby BJ, Trau M. Trends Biotechnol. 2002; 20: 167
  • 79 Burbaum JJ. Drug Discov. Today 1998; 3: 313
  • 80 Meng Y, Yang S, Li H. ChemSusChem 2022; 15: e202102581
  • 81 Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. Angew. Chem. Int. Ed. 2017; 56: 15446
  • 82 Dong Z, Wen Z, Zhao F, Kuhn S, Noël T. Chem. Eng. Sci: X 2021; 10: 100097
  • 83 McMullen JP, Jensen KF. Annu. Rev. Anal. Chem. 2010; 3: 19
  • 84 Hardwick T, Ahmed N. RSC Adv. 2018; 8: 22233
  • 85 Suga S, Okajima M, Fujiwara K, Yoshida J. J. Am. Chem. Soc. 2001; 123: 7941
  • 86 Mo Y, Lu Z, Rughoobur G, Patil P, Gershenfeld N, Akinwande AI, Buchwald SL, Jensen KF. Science 2020; 368: 1352
  • 87 Leech MC, Garcia AD, Petti A, Dobbs AP, Lam K. React. Chem. Eng. 2020; 5: 977
  • 88 Cardoso DS. P, Šljukić B, Santos DM. F, Sequeira CA. C. Org. Process Res. Dev. 2017; 21: 1213
  • 89 Atobe M, Tateno H, Matsumura Y. Chem. Rev. 2018; 118: 4541
  • 90 Zheng S, Yan J, Wang K. Engineering 2021; 7: 22
  • 91 Noël T, Cao Y, Laudadio G. Acc. Chem. Res. 2019; 52: 2858
  • 92 Hu L, Stuart M, Tian J, Maurer K, Moeller KD. J. Am. Chem. Soc. 2010; 132: 16610
  • 93 Tian J, Maurer K, Tesfu E, Moeller KD. J. Am. Chem. Soc. 2005; 127: 1392
  • 94 Shafir A, Lichtor PA, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3490
  • 95 Mo Y, Rughoobur G, Nambiar AM. K, Zhang K, Jensen KF. Angew. Chem. Int. Ed. 2020; 59: 20890
  • 96 Plieth W. Electrochemistry for Materials Science . Elsevier; Amsterdam: 2008: 143
  • 97 Majeed S, Naqvi ST. R, ul Haq MN, Ashiq MN. In Analytical Techniques in Biosciences. Patrick-Iwuanyanwu KC, Shah MA, Ifemeje JC, Rasul A. Academic Press; New York: 2022: 157
  • 98 Weber AZ. In Encyclopedia of Applied Electrochemistry . Kreysa G, Ota K, Savinell RF. Springer; New York: 2014: 1203
  • 99 Wang J, Liu P, Sherman E, Soukiazian S, Verbrugge M. Patent US9379418B2, 2016
  • 100 Schuett FM, Zeller SJ, Eckl MJ, Matzik FM, Heubach M, Geng T, Hermann JM, Uhl M, Kibler LA, Engstfeld AK, Jacob T. Angew. Chem. Int. Ed. 2021; 60: 22783
  • 101 Nguyen Minh Q, Tong HD, Kuijk A, van de Bent F, Beekman P, van Rijn CJ. M. RSC Adv. 2017; 7: 50279
  • 102 Stulík K, Amatore C, Holub K, Marecek V, Kutner W. Pure Appl. Chem. 2000; 72: 1483
  • 103 Rusling JF, Kumar CV, Gutkind JS, Patel V. Analyst 2010; 135: 2496
  • 104 Kadimisetty K, Malla S, Sardesai NP, Joshi AA, Faria RC, Lee NH, Rusling JF. Anal. Chem. 2015; 87: 4472
  • 105 Kadimisetty K, Malla S, Bhalerao KS, Mosa IM, Bhakta S, Lee NH, Rusling JF. Anal. Chem. 2018; 90: 7569
  • 106 Grainger R, Whibley S. Org. Process Res. Dev. 2021; 25: 354
  • 107 Vervoort N, Goossens K, Baeten M, Chen Q. Anal. Sci. Adv. 2021; 2: 109
  • 108 Shin SJ, Kim JY, An S, Chung TD. Curr. Opin. Electrochem. 2022; 35: 101054
  • 109 Farghaly O, Hameed RS, Abu-Nawwas A.-AH. Int. J. Pharmaceut. Sci. Rev. Res. 2014; 25: 37
  • 110 Hoar BB, Zhang W, Xu S, Deeba R, Costentin C, Gu Q, Liu C. ACS Meas. Au 2022; 2: 595
  • 111 Puthongkham P, Venton BJ. Analyst 2020; 145: 1087
  • 112 Li L, Chen L, Chen Z. Anal. Biochem. 2022; 647: 114684
  • 113 Daniele S. In Encyclopedia of Analytical Science, 2nd ed. Worsfold P, Townshend A, Poole C. Elsevier; Oxford: 2005: 197
  • 114 Faria LV, Lima AP, Araújo FM, Lisboa TP, Matos MA. C, Munoz RA. A, Matos RC. Anal. Meth. 2019; 11: 5328
  • 115 Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Nørskov JK. J. Phys. Chem. B 2003; 107: 11013
  • 116 Wang S, Zhang J, Gharbi O, Vivier V, Gao M, Orazem ME. Nat. Rev. Meth. Primers 2021; 1: 41
  • 117 Zhang J, Zhang H, Wu J, Zhang J. PEM Fuel Cell Testing and Diagnosis . Elsevier; Amsterdam: 2013: 81
  • 118 Li S, Thomas A. Advanced Nanomaterials for Electrochemical-Based Energy Conversion and Storage. Elsevier; Amsterdam: 2020: 393
  • 119 McKenzie EC. R, Hosseini S, Petro AG. C, Rudman KK, Gerroll BH. R, Mubarak MS, Baker LA, Little RD. Chem. Rev. 2022; 122: 3292
  • 120 Wassum KM, Phillips PE. M. ACS Chem. Neurosci. 2015; 6: 11
  • 121 Deshpande AG, Gu Y, Matthews SM, Yunus K, Slater NK. H, Brennan CM, Fisher AC. Chem. Eng. J. 2009; 149: 428
  • 122 Abollino O, Giacomino A, Malandrino M. In Encyclopedia of Analytical Science, 3rd ed. Worsfold P, Poole C, Townshend A, Miró M. Academic Press; Oxford: 2019: 238
  • 123 Mortimer RJ. Encyclopedia of Spectroscopy and Spectrometry. Elsevier; 2017: 172
  • 124 Tusi MM, Brandalise M, Verjúlio-Silva RW. R, Correa OV, Villalba JC, Anaissi FJ, Neto AO, Linardi M, Spinacé EV. Studies in Surface Science and Catalysis, Vol. 175. Elsevier; Amsterdam: 2010: 551
  • 125 Schumm B. In Encyclopedia of Applied Electrochemistry . Kreysa G, Ota K, Savinell RF. Springer; New York: 2014: 149
  • 126 Magar HS, Hassan RY. A, Mulchandani A. Sensors 2021; 21: 6578
  • 127 Artificial Intelligence (AI) in Drug Discovery (accessed Dec. 10, 2022): https://www.kantify.com/insights/artificial-intelligence-ai-in-drug-discovery
  • 128 Dreiman GH. S, Bictash M, Fish PV, Griffin L, Svensson F. SLAS Discov. 2021; 26: 257
  • 129 Jorner K, Tomberg A, Bauer C, Sköld C, Norrby P.-O. Nat. Rev. Chem. 2021; 5: 240
  • 130 Ahneman DT, Estrada JG, Lin S, Dreher SD, Doyle AG. Science 2018; 360: 186
  • 131 Zahrt AF, Henle JJ, Rose BT, Wang Y, Darrow WT, Denmark SE. Science 2019; 363: eaau5631
  • 132 Mitchell JB. O. WIREs Comput. Mol. Sci. 2014; 4: 468
  • 133 Baum ZJ, Yu X, Ayala PY, Zhao Y, Watkins SP, Zhou Q. J. Chem. Inf. Model. 2021; 61: 3197
  • 134 MacLeod BP, Parlane FG. L, Morrissey TD, Häse F, Roch LM, Dettelbach KE, Moreira R, Yunker LP. E, Rooney MB, Deeth JR, Lai V, Ng GJ, Situ H, Zhang RH, Elliott MS, Haley TH, Dvorak DJ, Aspuru-Guzik A, Hein JE, Berlinguette CP. Sci. Adv. 2020; 6: eaaz8867
  • 135 Dörr M, Röckl JL, Rein J, Schollmeyer D, Waldvogel SR. Chem. Eur. J. 2020; 26: 10195
  • 136 Blanco DE, Lee B, Modestino MA. Proc. Natl. Acad. Sci. U.S.A. 2019; 116: 17683
  • 137 Jinich A, Sanchez-Lengeling B, Ren H, Harman R, Aspuru-Guzik A. ACS Cent. Sci. 2019; 5: 1199
  • 138 Hielscher M, Oehl EK, Gleede B, Buchholz J, Waldvogel SR. ChemElectroChem 2021; 8: 3904
  • 139 Seidler J, Bernhard R, Haufe S, Neff C, Gärtner T, Waldvogel SR. Org. Process Res. Dev. 2021; 25: 2622
  • 140 Martinez Alvarado JI, Meinhardt JM, Lin S. Tetrahedron Chem 2022; 1: 100012
  • 141 Xie Y, Sattari K, Zhang C, Lin J. Prog. Mater. Sci. 2023; 132: 101043
  • 142 Whitacre JF, Mitchell J, Dave A, Wu W, Burke S, Viswanathan V. J. Electrochem. Soc. 2019; 166: A4181
  • 143 Dörr M, Hielscher MM, Proppe J, Waldvogel SR. ChemElectroChem 2021; 8: 2621
  • 144 Naito Y, Kondo M, Nakamura Y, Shida N, Ishikawa K, Washio T, Takizawa S, Atobe M. Chem. Commun. 2022; 58: 3893
  • 145 Chen Y, Tian B, Cheng Z, Li X, Huang M, Sun Y, Liu S, Cheng X, Li S, Ding M. Angew. Chem. Int. Ed. 2021; 60: 4199
  • 146 McMullen JP, Stone MT, Buchwald SL, Jensen KF. Angew. Chem. Int. Ed. 2010; 49: 7076
  • 147 Epps RW, Volk AA, Ibrahim MY. S, Abolhasani M. Chem 2021; 7: 2541
  • 148 Porta R, Benaglia M, Puglisi A. Org. Process Res. Dev. 2016; 20: 2
  • 149 Britton J, Raston CL. Chem. Soc. Rev. 2017; 46: 1250
  • 150 Zeng W, Guo L, Xu S, Chen J, Zhou J. Trends Biotechnol. 2020; 38: 888
  • 151 Bioinformatics and Drug Discovery, In Methods in Molecular Biology, Vol. 1939. Larson RS, Oprea TI. Springer; New York: 2019
  • 152 Krska SW, DiRocco DA, Dreher SD, Shevlin M. Acc. Chem. Res. 2017; 50: 2976
  • 153 Jurica JA, McMullen JP. Org. Process Res. Dev. 2021; 25: 282
  • 154 Shevlin M. ACS Med. Chem. Lett. 2017; 8: 601
  • 155 Pyzer-Knapp EO, Suh C, Gómez-Bombarelli R, Aguilera-Iparraguirre J, Aspuru-Guzik A. Annu. Rev. Mater. Res. 2015; 45: 195
  • 156 Raccuglia P, Elbert KC, Adler PD. F, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ. Nature 2016; 533: 73
  • 157 Kadulkar S, Sherman ZM, Ganesan V, Truskett TM. Annu. Rev. Chem. Biomol. Eng. 2022; 13: 235
  • 158 Zahrt AF, Mo Y, Nandiwale KY, Shprints R, Heid E, Jensen KF. J. Am. Chem. Soc. 2022; 144: 22599
  • 159 Mehr SH. M, Craven M, Leonov AI, Keenan G, Cronin L. Science 2020; 370: 101
  • 160 Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang X, Li X, Alston BM, Li B, Clowes R, Rankin N, Harris B, Sprick RS, Cooper AI. Nature 2020; 583: 237
  • 161 Zhu Q, Zhang F, Huang Y, Xiao H, Zhao L, Zhang X, Song T, Tang X, Li X, He G, Chong B, Zhou J, Zhang Y, Zhang B, Cao J, Luo M, Wang S, Ye G, Zhang W, Chen X, Cong S, Zhou D, Li H, Li J, Zou G, Shang W, Jiang J, Luo Y. Natl. Sci. Rev. 2022; 9: nwac190
  • 162 Su L, Ferrandon M, Kowalski JA, Vaughey JT, Brushett FR. J. Electrochem. Soc. 2014; 161: A1905