RSS-Feed abonnieren
DOI: 10.1055/a-2076-7939
Phytopharmaceuticals and Herbal Approaches to Target Neurodegenerative Disorders
Abstract
Neurodegeneration is characterized as the continuous functional and structural loss of neurons, resulting in various clinical and pathological manifestations and loss of functional anatomy. Medicinal plants have been oppressed from ancient years and are highly considered throughout the world as a rich source of therapeutic means for the prevention, treatment of various ailments. Plant-derived medicinal products are becoming popular in India and other nations. Further herbal therapies shows good impact on chronic long term illnesses including degenerative conditions of neurons and brain. The use of herbal medicines continues to expand rapidly across the world. The active phytochemical constituents of individual plants are sometimes insufficient to achieve the desirable therapeutic effects. Combining the multiple herbs in a particular ratio (polyherbalism) will give a better therapeutic effect and reduce toxicity. Herbal-based nanosystems are also being studied as a way to enhance the delivery and bioavailability of phytochemical compounds for the treatment of neurodegenerative diseases. This review mainly focuses on the importance of the herbal medicines, polyherbalism and herbal-based nanosystems and its clinical significance for neurodegenerative diseases.
Publikationsverlauf
Eingereicht: 02. Februar 2023
Angenommen: 21. März 2023
Artikel online veröffentlicht:
12. Juni 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
- 1 Przedborski S, Vila M, Jackson-Lewis V. Series Introduction: Neurodegeneration: What is it and where are we?. Journal of Clinical Investigation 2003; 111: 3-10 DOI: 10.1172/jci17522.
- 2 Jellinger KA. Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 2010; DOI: 10.1111/j.1582-4934.2010.01010.x.
- 3 Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770-776 DOI: 10.1038/35037710.
- 4 Melo A, Monteiro L, Lima RM. et al. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives. Oxid Med Cell Longev 2011; 2011: 1-14 DOI: 10.1155/2011/467180.
- 5 Cassagnes LE, Chhour M, Pério P. et al. Oxidative stress and neurodegeneration: The possible contribution of quinone reductase 2. Free Radic Biol Med 2018; 120: 56-61 DOI: 10.1016/j.freeradbiomed.2018.03.002.
- 6 Morroni F, Sita G, Graziosi A. et al. PQM130, a Novel Feruloyl–Donepezil Hybrid Compound, Effectively Ameliorates the Cognitive Impairments and Pathology in a Mouse Model of Alzheimer’s Disease. Front Pharmacol 2019; 10 DOI: 10.3389/fphar.2019.00658.
- 7 Dugger BN, Hoffman BR, Scroggins A. et al. Neurosci Lett 2019; 696: 132-139 DOI: 10.1016/j.neulet.2018.12.031.
- 8 Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 2009; 8: 464-474 DOI: 10.1016/S1474-4422(09)70068-7.
- 9 Desai AK, Grossberg GT. Diagnosis and treatment of Alzheimer’s disease. Neurology 2005; 64: S34-S39 DOI: 10.1212/WNL.64.12_suppl_3.S34.
- 10 Rees K, Stowe R, Patel S. et al. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies. Cochrane Database of Systematic Reviews 2011; DOI: 10.1002/14651858.CD008454.pub2.
- 11 González H, Pacheco R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation 2014; 11: 201 DOI: 10.1186/s12974-014-0201-8.
- 12 Querfurth HW, LaFerla FM. Alzheimer’s Disease. New England Journal of Medicine 2010; 362: 329-344 DOI: 10.1056/NEJMra0909142.
- 13 Awasthi A, Matsunaga Y, Yamada T. Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Exp Neurol 2005; 196: 282-289 DOI: 10.1016/j.expneurol.2005.08.001.
- 14 Giraldo E, Lloret A, Fuchsberger T. et al. Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: Protective role of vitamin E. Redox Biol 2014; 2: 873-877 DOI: 10.1016/j.redox.2014.03.002.
- 15 Lees AJ. Unresolved issues relating to the Shaking Palsy on the celebration of James Parkinson’s 250th birthday. Movement Disorders 2007; 22: S327-S334 DOI: 10.1002/mds.21684.
- 16 Miller DB, O’Callaghan JP. Biomarkers of Parkinson’s disease: Present and future. Metabolism 2015; 64: S40-S46 DOI: 10.1016/j.metabol.2014.10.030.
- 17 Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4+T Cells in Neurodegenerative Diseases. Front Cell Neurosci 2018; 12 DOI: 10.3389/fncel.2018.00114.
- 18 Puspita L, Chung SY, Shim J. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain 2017; 10: 53 DOI: 10.1186/s13041-017-0340-9.
- 19 Martinez B, Peplow P. Neuroprotection by immunomodulatory agents in animal models of Parkinson’s disease. Neural Regen Res 2018; 13: 1493 DOI: 10.4103/1673-5374.237108.
- 20 MSCOI Study Group, European Multiple Sclerosis Platform. Kobelt G, Thompson A, Berg J. et al. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler 2017; 23: 1123-1136 DOI: 10.1177/1352458517694432.
- 21 Fischer MT, Wimmer I, Höftberger R. et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 2013; 136: 1799-1815 DOI: 10.1093/brain/awt110.
- 22 Haider L, Fischer MT, Frischer JM. et al. Oxidative damage in multiple sclerosis lesions. Brain 2011; 134: 1914-1924 DOI: 10.1093/brain/awr128.
- 23 D’Amico E, Factor-Litvak P, Santella RM. et al. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med 2013; 65: 509-527 DOI: 10.1016/j.freeradbiomed.2013.06.029.
- 24 Hooten KG, Beers DR, Zhao W. et al. Protective and Toxic Neuroinflammation in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015; 12: 364-375 DOI: 10.1007/s13311-014-0329-3.
- 25 Li Q, Spencer NY, Pantazis NJ. et al. Alsin and SOD1G93A Proteins Regulate Endosomal Reactive Oxygen Species Production by Glial Cells and Proinflammatory Pathways Responsible for Neurotoxicity. Journal of Biological Chemistry 2011; 286: 40151-40162 DOI: 10.1074/jbc.M111.279711.
- 26 Alzheimer’s Disease International. 2019; Im Internet: https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
- 27 Rocca WA. The burden of Parkinson’s disease: a worldwide perspective. Lancet Neurol 2018; 17: 928-929 DOI: 10.1016/S1474-4422(18)30355-7.
- 28 Razdan S, Kaul RL, Motta A. et al. Prevalence and Pattern of Major Neurological Disorders in Rural Kashmir (India) in 1986. Neuroepidemiology 1994; 13: 113-119 DOI: 10.1159/000110368.
- 29 Saha SP, Bhattacharya S, Das SK. et al Epidemiological study of neurological disorders in a rural population of Eastern India. J Indian Med Assoc 2003; 101: 299-300 302-304
- 30 Das SK, Biswas A, Roy T. et al. A random sample survey for prevalence of major neurological disorders in Kolkata. Indian J Med Res 2006; 124: 163-172
- 31 Ragothaman M, Murgod UA, Gururaj G. et al. Lower risk of Parkinson’s disease in an admixed population of European and Indian origins. Movement Disorders 2003; 18: 912-914 DOI: 10.1002/mds.10449.
- 32 Tan LC, Venketasubramanian N, Hong CY. et al. Prevalence of Parkinson disease in Singapore: Chinese vs Malays vs Indians. Neurology 2004; 62: 1999-2004 DOI: 10.1212/01.WNL.0000128090.79756.10.
- 33 Heron M. Deaths: Leading Causes for 2016. Natl Vital Stat Rep 2018; 67: 1-77
- 34 Vardi G, Merrick J. Neurological Disorders: Public Health Challenges. J Policy Pract Intellect Disabil 2008; 5: 75-75
- 35 Ferri CP, Prince M, Brayne C. et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005; 366: 2112-2117 DOI: 10.1016/S0140-6736(05)67889-0.
- 36 Kritsilis M V, Rizou S, Koutsoudaki PN. et al. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19: 2937 DOI: 10.3390/ijms19102937.
- 37 Golden LC, Voskuhl R. The importance of studying sex differences in disease: The example of multiple sclerosis. J Neurosci Res 2017; 95: 633-643 DOI: 10.1002/jnr.23955.
- 38 Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci 2016; 18: 437-446 DOI: 10.31887/DCNS.2016.18.4/cepperson.
- 39 Gennatas ED, Avants BB, Wolf DH. et al. Age-Related Effects and Sex Differences in Gray Matter Density, Volume, Mass, and Cortical Thickness from Childhood to Young Adulthood. The Journal of Neuroscience 2017; 37: 5065-5073 DOI: 10.1523/JNEUROSCI.3550-16.2017.
- 40 Przedborski S, Vila M, Jackson-Lewis V. Series Introduction: Neurodegeneration: What is it and where are we?. Journal of Clinical Investigation 2003; 111: 3-10 DOI: 10.1172/JCI17522.
- 41 Przedborski S, Vila M. MPTP: a review of its mechanisms of neurotoxicity. Clin Neurosci Res 2001; 1: 407-418 DOI: 10.1016/S1566-2772(01)00019-6.
- 42 Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. Journal of Clinical Investigation 2017; 127: 3577-3587 DOI: 10.1172/JCI90609.
- 43 Angelo DePalma. Neurodegenerative Disease Research Update. 2020; Im Internet: https://www.biocompare.com/Editorial-Articles/563155-Neurodegenerative-Disease-Research-Update/
- 44 Palmer S. Smart Eating-How Diet May Help Preserve the Brain. Today’s Dietitian 2009; 11: 24
- 45 Valenzuela R, Valenzuela A. Docosahexaenoic Acid (DHA), in the Prevention and Treatment of Neurodegenerative Diseases. In: Neurodegenerative Diseases – Processes, Prevention, Protection and Monitoring. InTech. 2011
- 46 Siddiqui RA. Docosahexaenoic Acid: A Potential Modulator of Brain Tumors and Metastasis. J Biomol Res Ther 2013; 02 DOI: 10.4172/2167-7956.1000e119.
- 47 Gomez-Pinilla F, Nguyen TTJ. Natural mood foods: The actions of polyphenols against psychiatric and cognitive disorders. Nutr Neurosci 2012; 15: 127-133 DOI: 10.1179/1476830511Y.0000000035.
- 48 Di Meo F, Margarucci S, Galderisi U. et al. Curcumin, Gut Microbiota, and Neuroprotection. Nutrients 2019; 11: 2426 DOI: 10.3390/nu11102426.
- 49 Berti V, Murray J, Davies M. et al. Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals. J Nutr Health Aging 2015; 19: 413-423 DOI: 10.1007/s12603-014-0534-0.
- 50 Dudar J. Release of acetylcholine from the hippocampus of freely moving rats during sensory stimulation and running. Neuropharmacology 1979; 18: 673-678 DOI: 10.1016/0028-3908(79)90034-0.
- 51 Maass A, Düzel S, Brigadski T. et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage 2016; 131: 142-154 DOI: 10.1016/j.neuroimage.2015.10.084.
- 52 Finkel SI. Effects of rivastigmine on behavioral and psychological symptoms of dementia in Alzheimer’s disease. Clin Ther 2004; 26: 980-990 DOI: 10.1016/S0149-2918(04)90172-5.
- 53 Lee JH, Jeong SK, Kim BC. et al. Donepezil across the spectrum of Alzheimer’s disease: dose optimization and clinical relevance. Acta Neurol Scand 2015; 131: 259-267 DOI: 10.1111/ane.12386.
- 54 Quinn N. Fortnightly Review: Drug treatment of Parkinson’s disease. BMJ 1995; 310: 575-579 DOI: 10.1136/bmj.310.6979.575.
- 55 Bonuccelli U, Colzi A, Del Dotto P. Pergolide in the Treatment of Patients With Early and Advanced Parkinson’s Disease. Clin Neuropharmacol 2002; 25: 1-10
- 56 McMurray CT. Huntington’s disease: new hope for therapeutics. Trends Neurosci 2001; 24: S32-S38 DOI: 10.1016/S0166-2236(00)01997-4.
- 57 Faissner S, Gold R. Oral Therapies for Multiple Sclerosis. Cold Spring Harb Perspect Med 2019; 9: a032011 DOI: 10.1101/cshperspect.a032011.
- 58 Ampofo JA, Andoh A, Tetteh W. et al. Microbiological Profile of Some Ghanaian Herbal Preparations – Safety Issues and Implications for the Health Professions. Open J Med Microbiol 2012; 02: 121-130 DOI: 10.4236/ojmm.2012.23018.
- 59 Parveen A, Parveen B, Parveen R. et al. Challenges and guidelines for clinical trial of herbal drugs. J Pharm Bioallied Sci 2015; 7: 329 DOI: 10.4103/0975-7406.168035.
- 60 Uabundit N, Wattanathorn J, Mucimapura S. et al. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 2010; 127: 26-31 DOI: 10.1016/j.jep.2009.09.056.
- 61 Mahmoodzadeh T, Kashani MH, Ramshini H. et al. Effect of Camellia sinensis on Spatial Memory in a Rat Model of Alzheimer’s Disease. Journal of Biomedicine 2016; 1 DOI: 10.17795/jbm-5340.
- 62 Thorajak P, Pannangrong W, Umka Welbat J. et al. Effects of Aged Garlic Extract on Cholinergic, Glutamatergic and GABAergic Systems with Regard to Cognitive Impairment in Aβ-Induced Rats. Nutrients 2017; 9 DOI: 10.3390/nu9070686.
- 63 Hosseini M, Mohammadpour T, Karami R. et al. Effects of the hydro-alcoholic extract of Nigella sativa on scopolamine-induced spatial memory impairment in rats and its possible mechanism. Chin J Integr Med 2015; 21: 438-444 DOI: 10.1007/s11655-014-1742-5.
- 64 Ahmed ME, Javed H, Khan MM. et al. Attenuation of oxidative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma 2013; 250: 1067-1078 DOI: 10.1007/s00709-013-0482-2.
- 65 Chiroma SM, Baharuldin MT, Mat Taib CN. et al. Centella asiatica Protects d-Galactose/AlCl3 Mediated Alzheimer’s Disease-Like Rats via PP2A/GSK-3β Signaling Pathway in Their Hippocampus. Int J Mol Sci 2019; 20: 1871 DOI: 10.3390/ijms20081871.
- 66 Jadiya P, Khan A, Sammi SR. et al. Anti-Parkinsonian effects of Bacopa monnieri: Insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson’s disease. Biochem Biophys Res Commun 2011; 413: 605-610 DOI: 10.1016/j.bbrc.2011.09.010.
- 67 Hosamani R, Krishna G. Muralidhara. Standardized Bacopa monnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain. Nutr Neurosci 2016; 19: 434-446 DOI: 10.1179/1476830514Y.0000000149.
- 68 Bitu Pinto N, da Silva Alexandre B, Neves KR. et al. Neuroprotective Properties of the Standardized Extract from Camellia sinensis (Green Tea) and Its Main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA Model of Parkinson’s Disease. Evidence-Based Complementary and Alternative Medicine 2015; 2015: 1-12 DOI: 10.1155/2015/161092.
- 69 Bigham M, Mohammadipour A, Hosseini M. et al. Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson’s disease: motor and non-motor outcomes. Metab Brain Dis 2021; 36: 927-937 DOI: 10.1007/s11011-021-00705-8.
- 70 Rai SN, Birla H, Singh SS. et al. Mucuna pruriens Protects against MPTP Intoxicated Neuroinflammation in Parkinson’s Disease through NF-κB/pAKT Signaling Pathways. Front Aging Neurosci 2017; 9: 421 DOI: 10.3389/fnagi.2017.00421.
- 71 Sandhu KS, Rana C. A. Evaluation of Anti Parkinson’s activity of Nigella sativa (Kalonji) seeds in chlorpromazineinduced experimental animal model. Int J Pharm Pharm Sci 2013; 5: 884-888
- 72 Jahromy M, Jalili M, Mohajer A. et al. Effects of Nigella sativa Seed Extract on Perphenzine-Induced Muscle Rigidity in Male Mice. World J Neurosci 2014; 04: 313-318 DOI: 10.4236/wjns.2014.44035.
- 73 Prakash J, Yadav SK, Chouhan S. et al. Neuroprotective Role of Withania somnifera Root Extract in Maneb – Paraquat Induced Mouse Model of Parkinsonism. Neurochem Res 2013; 38: 972-980 DOI: 10.1007/s11064-013-1005-4.
- 74 Gaur V, Bodhankar SL, Mohan V. et al. Neurobehavioral assessment of hydroalcoholic extract of Trigonella foenum-graecum seeds in rodent models of Parkinson’s disease. Pharm Biol 2013; 51: 550-557 DOI: 10.3109/13880209.2012.747547.
- 75 Bhangale JO, Acharya SR. Anti-Parkinson Activity of Petroleum Ether Extract of Ficus religiosa (L.) Leaves. Adv Pharmacol Sci 2016; 2016: 1-9 DOI: 10.1155/2016/9436106.
- 76 Bhangale JO, Acharya NS, Acharya SR. Protective effect of Ficus religiosa (L.) against 3-nitropropionic acid induced Huntington disease. Orient Pharm Exp Med 2016; 16: 165-174 DOI: 10.1007/s13596-016-0237-7.
- 77 Mahdy HM, Tadros MG, Mohamed MR. et al. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem Int 2011; 59: 770-778 DOI: 10.1016/j.neuint.2011.07.012.
- 78 Kumar P, Kumar A. Possible Neuroprotective Effect of Withania somnifera Root Extract Against 3-Nitropropionic Acid-Induced Behavioral, Biochemical, and Mitochondrial Dysfunction in an Animal Model of Huntington’s Disease. J Med Food 2009; 12: 591-600 DOI: 10.1089/jmf.2008.0028.
- 79 Dutta K, Patel P, Julien J-P. Protective effects of Withania somnifera extract in SOD1G93A mouse model of amyotrophic lateral sclerosis. Exp Neurol 2018; 309: 193-204 DOI: 10.1016/j.expneurol.2018.08.008.
- 80 Saini N, Singh D, Sandhir R. Neuroprotective Effects of Bacopa monnieri in Experimental Model of Dementia. Neurochem Res 2012; 37: 1928-1937 DOI: 10.1007/s11064-012-0811-4.
- 81 Rai R, Singh HK, Prasad S. A Special Extract of Bacopa monnieri (CDRI-08) Restores Learning and Memory by Upregulating Expression of the NMDA Receptor Subunit GluN2B in the Brain of Scopolamine-Induced Amnesic Mice. Evidence-Based Complementary and Alternative Medicine 2015; 2015: 1-13 DOI: 10.1155/2015/254303.
- 82 Tyler VE. Phytomedicines: Back to the Future. J Nat Prod 1999; 62: 1589-1592 DOI: 10.1021/np9904049.
- 83 Martinez MJ, Lazaro RM, Del Olmo LM. et al. Anti-Infectious Activity in The Anthemideae Tribe 2008; 445-516
- 84 Maurya R, Singh G, Yadav PP. Antiosteoporotic Agents From Natural Sources 2008; 517-548
- 85 Chopra A, Doiphode VV. Ayurvedic medicine: core concept, therapeutic principles, and current relevance. Medical Clinics of North America 2002; 86: 75-89 DOI: 10.1016/S0025-7125(03)00073-7.
- 86 Che CT, Wang ZJ, Chow MS. et al. Herb-Herb Combination for Therapeutic Enhancement and Advancement: Theory, Practice and Future Perspectives. Molecules 2013; 18: 5125-5141 DOI: 10.3390/molecules18055125.
- 87 Risberg K, Fodstad Ø, Andersson Y. Synergistic Anticancer Effects of the 9.2.27PE Immunotoxin and ABT-737 in Melanoma. PLoS One 2011; 6: e24012 DOI: 10.1371/journal.pone.0024012.
- 88 Ramaiah M, Chakravathi G, Yasaswini K. In vitro biological standardization, formulation and evaluation of directly compressed polyherbal anthelmintic tablets. Pharmacognosy Journal 2013; 5: 130-134 DOI: 10.1016/j.phcgj.2013.04.004.
- 89 Parasuraman S, Thing G, Dhanaraj S. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev 2014; 8: 73 DOI: 10.4103/0973-7847.134229.
- 90 Little CV. Simply because it works better: Exploring motives for the use of medical herbalism in contemporary U.K. health care. Complement Ther Med 2009; 17: 300-308 DOI: 10.1016/j.ctim.2009.08.001.
- 91 Joshi CS, Priya ES, Venkataraman S. Acute and Subacute Toxicity Studies on the Polyherbal Antidiabetic Formulation Diakyur in Experimental Animal Models. Journal of Health Science 2007; 53: 245-249 DOI: 10.1248/jhs.53.245.
- 92 Rajendran K, Chellappan DR, Sankaranarayanan S. et al. Investigations on a polyherbal formulation for treatment of cognitive impairment in a cholinergic dysfunctional rodent model. Neurochem Int 2020; 141: 104890 DOI: 10.1016/j.neuint.2020.104890.
- 93 Shah JS, Goyal RK. Investigation of Neuropsychopharmacological Effects of a Polyherbal Formulation on the Learning and Memory Process in Rats. Journal of Young Pharmacists 2011; 3: 119-124 DOI: 10.4103/0975-1483.80296.
- 94 Bakshi V, Kumar KS, Begum N. et al. Neuroprotective Activity of Ethanolic Extract of Polyherbal Formulation on Streptozotocin Induced Alzheimer’s Disease in Mice. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH 2016; 1: 1-7 DOI: 10.21477/ijapsr.v1i1.9602.
- 95 Ambikar D, Melese E, Patil M. Influence of Unani polyherbal formulation on learning and memory retention in mice. Pharmaceutical Sciences Asia 2018; 45: 174-183 DOI: 10.29090/psa.2018.03.174.
- 96 Upadhyay P, Sadhu A, Singh PK. et al. Revalidation of the neuroprotective effects of a United States patented polyherbal formulation on scopolamine induced learning and memory impairment in rats. Biomedicine & Pharmacotherapy 2018; 97: 1046-1052 DOI: 10.1016/j.biopha.2017.11.008.
- 97 Malik J, Kaur S, Karan M. et al. Neuroprotective effect of standardized extracts of three Lactuca sativa Linn. varieties against 3-NP induced Huntington’s disease like symptoms in rats. Nutr Neurosci 2020; 1-15 DOI: 10.1080/1028415X.2020.1841500.
- 98 Wang SE, Lin CL, Hsu CH. et al. Treatment with a herbal formula B401 enhances neuroprotection and angiogenesis in the R6/2 mouse model of Huntington’s disease. Drug Des Devel Ther 2015; 9: 887-900 DOI: 10.2147/DDDT.S78015.
- 99 Nandagopal A, Ali Khan Ma Neuroprotective Effect Of Polyherbal Formulation In Parkinson’s Animal Model. Asian Journal of Pharmaceutical and Clinical Research 2020; 121-125 DOI: 10.22159/ajpcr.2020.v13i3.36549.
- 100 Bhaskar S, Tian F, Stoeger T. et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010; 7: 3 DOI: 10.1186/1743-8977-7-3.
- 101 Caruso G, Caffo M, Alafaci C. et al. Could nanoparticle systems have a role in the treatment of cerebral gliomas?. Nanomedicine 2011; 7: 744-752 DOI: 10.1016/j.nano.2011.02.008.
- 102 Poovaiah N, Davoudi Z, Peng H. et al. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 2018; 10: 16962-16983 DOI: 10.1039/C8NR04073G.
- 103 Ratheesh G, Tian L, Venugopal JR. et al. Role of medicinal plants in neurodegenerative diseases. Biomanufacturing Reviews 2017; 2: 2 DOI: 10.1007/s40898-017-0004-7.
- 104 Ramanathan S, Archunan G, Sivakumar M. et al Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; Volume 13: 5561-5576 DOI: 10.2147/IJN.S149022.
- 105 Modi G, Pillay V, Choonara YE. et al. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog Neurobiol 2009; 88: 272-285 DOI: 10.1016/j.pneurobio.2009.05.002.
- 106 Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 2010; 1184: 154-172 DOI: 10.1111/j.1749-6632.2009.05108.x.
- 107 Ganesan P, Ko HM, Kim IS. et al. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomedicine 2015; 6757 DOI: 10.2147/IJN.S93918.
- 108 Jain S, Ancheria RK, Shrivastava S. et al. An Overview of Nanogel –Novel Drug Delivery System. Asian Journal of Pharmaceutical Research and Development 2019; 7: 47-55 DOI: 10.22270/ajprd.v7i2.482.
- 109 Naz S, Shamoon M, Wang R. et al. Advances in Therapeutic Implications of Inorganic Drug Delivery Nano-Platforms for Cancer. Int J Mol Sci 2019; 20: 965 DOI: 10.3390/ijms20040965.
- 110 Aryani A, Denecke B. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine?. Mol Neurobiol 2016; 53: 818-834 DOI: 10.1007/s12035-014-9054-5.
- 111 Sarko DK, McKinney CE. Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease. Front Neurosci 2017; 11 DOI: 10.3389/fnins.2017.00082.
- 112 Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci 2019; 14: 480-496 DOI: 10.1016/j.ajps.2018.09.005.
- 113 Zhang M, Zang X, Wang M. et al. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B 2019; 7: 2421-2433 DOI: 10.1039/C9TB00170K.
- 114 Aalinkeel R, Kutscher HL, Singh A. et al. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer’s disease?. J Drug Target 2018; 26: 182-193 DOI: 10.1080/1061186X.2017.1354002.
- 115 Sandhir R, Yadav A, Mehrotra A. et al. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med 2014; 16: 106-118 DOI: 10.1007/s12017-013-8261-y.
- 116 Huo X, Zhang Y, Jin X. et al. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 2019; 190: 98-102 DOI: 10.1016/J.JPHOTOBIOL.2018.11.008.
- 117 Naeimi R, Safarpour F, Hashemian M. et al. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum. Neurosci Lett 2018; 674: 1-10 DOI: 10.1016/j.neulet.2018.03.018.
- 118 Hassanzadeh P, Arbabi E, Atyabi F. et al. Ferulic acid-loaded nanostructured lipid carriers: A promising nanoformulation against the ischemic neural injuries. Life Sci 2018; 193: 64-76 DOI: 10.1016/j.lfs.2017.11.046.
- 119 Mohammad-Beigi H, Morshedi D, Shojaosadati SA. et al. Gallic acid loaded onto polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA-GA NPs) stabilizes α-synuclein in the unfolded conformation and inhibits aggregation. RSC Adv 2016; 6: 85312-85323 DOI: 10.1039/C6RA08502D.
- 120 Etman SM, Elnaggar YS, Abdelmonsif DA. et al. Oral Brain-Targeted Microemulsion for Enhanced Piperine Delivery in Alzheimer’s Disease Therapy: In Vitro Appraisal, In Vivo Activity, and Nanotoxicity. AAPS PharmSciTech 2018; 19: 3698-3711 DOI: 10.1208/s12249-018-1180-3.
- 121 Dahiya S, Rani R, Dhingra D. et al. Potentiation of nootropic activity of EGCG loaded nanosuspension by piperine in swiss male albino mice. Futur J Pharm Sci 2018; 4: 296-302 DOI: 10.1016/j.fjps.2018.10.005.
- 122 Binyamin O, Larush L, Frid K. et al. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant. Int J Nanomedicine 2015; 7165 DOI: 10.2147/IJN.S92704.
- 123 Kuo Y-C, Chen I-Y, Rajesh R. Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J Taiwan Inst Chem Eng 2018; 87: 1-14 DOI: 10.1016/j.jtice.2018.03.001.
- 124 Ghaffari F, Hajizadeh Moghaddam A, Zare M. Research Paper: Neuroprotective Effect of Quercetin Nanocrystal in a 6-Hydroxydopamine Model of Parkinson Disease: Biochemical and Behavioral Evidence. Basic and Clinical Neuroscience Journal 2018; 9: 317-324 DOI: 10.32598/bcn.9.5.317.
- 125 Sun J, Wei C, Liu Y. et al. Progressive release of mesoporous nano-selenium delivery system for the multi-channel synergistic treatment of Alzheimer’s disease. Biomaterials 2019; 197: 417-431 DOI: 10.1016/j.biomaterials.2018.12.027.
- 126 Ismail N, Ismail M, Azmi NH. et al. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomedicine & Pharmacotherapy 2017; 95: 780-788 DOI: 10.1016/j.biopha.2017.08.074.
- 127 Mani M, Balasubramanian S, Manikandan KR. et al. Neuroprotective potential of Naringenin-loaded solid-lipid nanoparticles against rotenone-induced Parkinson’s disease model. J Appl Pharm Sci 2020; DOI: 10.7324/JAPS.2021.110203.
- 128 Chen K, Chen KJ, Zhou WQ. [Clinical study of effect of yizhi capsule on senile vascular dementia]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1997; 17: 393-397
- 129 Mizukami K, Asada T, Kinoshita T. et al. A randomized cross-over study of a traditional Japanese medicine (kampo), yokukansan, in the treatment of the behavioural and psychological symptoms of dementia. Int J Neuropsychopharmacol 2009; 12: 191 DOI: 10.1017/S146114570800970X.
- 130 Monji A, Takita M, Samejima T. et al. Effect of yokukansan on the behavioral and psychological symptoms of dementia in elderly patients with Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 308-311 DOI: 10.1016/j.pnpbp.2008.12.008.
- 131 Okahara K, Ishida Y, Hayashi Y. et al. Effects of Yokukansan on behavioral and psychological symptoms of dementia in regular treatment for Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 532-536 DOI: 10.1016/j.pnpbp.2010.02.013.
- 132 Zhang Y, Lin C, Zhang L. et al. Cognitive Improvement during Treatment for Mild Alzheimer’s Disease with a Chinese Herbal Formula: A Randomized Controlled Trial. PLoS One 2015; 10: e0130353 DOI: 10.1371/journal.pone.0130353.
- 133 Furukawa K, Tomita N, Uematsu D. et al. Randomized double-blind placebo-controlled multicenter trial of Yokukansan for neuropsychiatric symptoms in Alzheimer’s disease. Geriatr Gerontol Int 2017; 17: 211-218 DOI: 10.1111/ggi.12696.
- 134 Shi J, Wei M, Ni J. et al. Tianzhi granule improves cognition and BPSD of vascular dementia: a randomized controlled trial. J Transl Med 2020; 18: 76 DOI: 10.1186/s12967-020-02232-z.
- 135 Meguro K, Yamaguchi S. Decreased Behavioral Abnormalities After Treatment with Combined Donepezil and Yokukansankachimpihange in Alzheimer Disease: An Observational Study. The Osaki-Tajiri Project. Neurol Ther 2018; 7: 333-340 DOI: 10.1007/s40120-018-0109-9.
- 136 Lin CH, Chiu HE, Wu SY. et al. Chinese Herbal Products for Non-Motor Symptoms of Parkinson’s Disease in Taiwan: A Population-Based Study. Front Pharmacol 2021; 11 DOI: 10.3389/fphar.2020.615657.