CC BY 4.0 · Organic Materials 2023; 5(02): 118-138
DOI: 10.1055/a-2076-8570
Organic Thin Films: From Vapor Deposition to Functional Applications
Short Review

Vapor-Deposited Polymer Films and Structure: Methods and Applications

Fang-Yu Chou#
a   Department of Chemical Engineering, National Taiwan University, 10617 No. 1, Section 4, Roosevelt Road, Taipei City, Taiwan
,
a   Department of Chemical Engineering, National Taiwan University, 10617 No. 1, Section 4, Roosevelt Road, Taipei City, Taiwan
,
a   Department of Chemical Engineering, National Taiwan University, 10617 No. 1, Section 4, Roosevelt Road, Taipei City, Taiwan
,
a   Department of Chemical Engineering, National Taiwan University, 10617 No. 1, Section 4, Roosevelt Road, Taipei City, Taiwan
,
a   Department of Chemical Engineering, National Taiwan University, 10617 No. 1, Section 4, Roosevelt Road, Taipei City, Taiwan
,
a   Department of Chemical Engineering, National Taiwan University, 10617 No. 1, Section 4, Roosevelt Road, Taipei City, Taiwan
b   Molecular Imaging Center, National Taiwan University, 10617 No. 1, Section 4, Roosevelt Road, Taipei City, Taiwan
› Author Affiliations


Abstract

Vapor deposition of polymers is known to result in densified thin films, and recent developments have advanced these polymers with interesting fabrication techniques to a variety of controlled structures other than thin films. With the advantages of chemical modification and functionalization of these polymers, advancements have combined both the physical and chemical properties of these vapor-deposited polymers to obtain controlled anisotropic polymers, including layer-by-layer, gradient, hierarchical, porosity, and the combination of the above, meaning that the produced polymers are functional and are addressed in devised physical configurations and chemical compositions. The main purpose of using polymer coatings as a tool for surface modification is to provide additional properties that decouple the natural properties of the underlying materials (including metals, polymers, oxides/ceramics, glass, silicon, etc.), and recent advancements have rendered novel insights into combined physical and chemical properties to fulfill the increasing needs of sophisticated requirements of materials for users. The review herein intends to deliver messages of recent progress of the advancements of vapor-deposited polymers, with discussions of the variations of the physical structures and chemical functionalities, and how these two aspects are integrated with novel fabrication techniques. The advanced vapor polymers now have the capability of controlled anisotropy in the physical structure and chemical composition and are expected to pave the way for interface engineering toward prospective material designs.

Table of content:

1. Introduction

2. Fabrication and Materials

3. Controls of Anisotropy

4. Applications

5. Conclusions and Outlook

# These authors contributed equally to this work.




Publication History

Received: 02 December 2022

Accepted after revision: 12 April 2023

Accepted Manuscript online:
19 April 2023

Article published online:
16 May 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Yang R, Asatekin A, Gleason KK. Soft Matter 2012; 8: 31
  • 2 Yu SJ, Pak K, Kwak MJ, Joo M, Kim BJ, Oh MS, Baek J, Park H, Choi G, Kim DH, Choi J, Choi Y, Shin J, Moon H, Lee E, Im SG. Adv. Eng. Mater. 2018; 20: 1700622
  • 3 Bazaka K, Grant DS, Alancherry S, Jacob MV. Plasma-Assisted Fabrication and Processing of Biomaterials. Biomedical Applications of Polymeric Materials and Composites. Francis R, Kumar DS. Wiley-VCH; Weinheim: 2016: 91
  • 4 Coclite AM. CVD Polymer Surfaces for Biotechnology and Biomedicine. CVD Polymers: Fabrication of Organic Surfaces and Devices. Gleason KK. Wiley-VCH; Weinheim: 2015: 301
  • 5 Sun T, Qing G, Su B, Jiang L. Chem. Soc. Rev. 2011; 40: 2029
  • 6 Yoshida M, Langer R, Lendlein A, Lahann J. J. Macromol. Sci., Polym. Rev. 2006; 46: 347
  • 7 Lahann J. Polym. Int. 2006; 55: 1361
  • 8 Lahann J. Chem. Eng. Commun. 2006; 193: 1457
  • 9 Elkasabi Y, Lahann J. Macromol. Rapid Commun. 2009; 30: 57
  • 10 Elkasabi Y, Yoshida M, Nandivada H, Chen H-Y, Lahann J. Macromol. Rapid Commun. 2008; 29: 855
  • 11 Tiefenauer L, Ros R. Colloids Surf., B 2002; 23: 95
  • 12 Sun T, Qing G, Su B, Jiang L. Chem. Soc. Rev. 2011; 40: 2909
  • 13 Langer R, Tirrell DA. Nature 2004; 428: 487
  • 14 Tu RS, Tirrell M. Adv. Drug Delivery Rev. 2004; 56: 1537
  • 15 Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 2480
  • 16 Ross AM, Jiang Z, Bastmeyer M, Lahann J. Small 2012; 8: 336
  • 17 Gao Y, Cole B, Tenhaeff WE. Macromol. Mater. Eng. 2018; 303: 1700425
  • 18 Hassan Z, Varadharajan D, Zippel C, Begum S, Lahann J, Bräse S. Adv. Mater. 2022; 34: 2201761
  • 19 Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL. Chem. Rev. 2015; 115: 10967
  • 20 Moni P, Al-Obeidi A, Gleason KK. J. Nanotechnol. (Beilstein) 2017; 8: 723
  • 21 Bilger D, Homayounfar SZ, Andrew TL. J. Mater. Chem. C 2019; 7: 7159
  • 22 Yang D, Wanglin C, Bingxin L, Chengyong W, Tongchun K, Yanqiu L. Ceram. Int. 2020; 46: 18373
  • 23 Coclite AM, Howden RM, Borrelli DC, Petruczok CD, Yang R, Yagüe JL, Ugur A, Chen N, Lee S, Jo WJ, Liu A, Wang X, Gleason KK. Adv. Mater. 2013; 25: 5392
  • 24 Redka D, Buttberg M, Franz G. Processes 2022; 10: 1982
  • 25 Sun L, Yuan G, Gao L, Yang J, Chhowalla M, Gharahcheshmeh MH, Gleason KK, Choi YS, Hong BH, Liu Z. Nat. Rev. Methods Primers 2021; 1: 5
  • 26 Khlyustova A, Cheng Y, Yang R. J. Mater. Chem. B 2020; 8: 6588
  • 27 Gleason K. Nat. Rev. Phys. 2020; 2: 374
  • 28 Gleason KK. Nat. Rev. Phys. 2020; 2: 347
  • 29 Welchert NA, Cheng C, Karandikar P, Gupta M. J. Vac. Sci. Technol., A 2020; 38: 063405
  • 30 Unger K, Coclite A. Pharmaceutics 2020; 12: 904
  • 31 Chen Z, Lau KKS. Macromolecules 2019; 52: 5183
  • 32 Mao X, Liu A, Tian W, Wang X, Gleason KK, Hatton TA. Adv. Funct. Mater. 2018; 28: 1706028
  • 33 Gleason KK. Front. Bioeng. Biotechnol. 2021; 9: 632753
  • 34 Loyer F, Combrisson A, Omer K, Moreno-Couranjou M, Choquet P, Boscher ND. ACS Appl. Mater. Interfaces 2019; 11: 1335
  • 35 Dorval Dion CA, Tavares JR. Powder Technol. 2013; 239: 484
  • 36 Lu M, Shao D, Wang P, Chen D, Zhang Y, Li M, Zhao J, Zhou Y. RSC Adv. 2016; 6: 82688
  • 37 Schröder S, Polonskyi O, Strunskus T, Faupel F. Mater. Today 2020; 37: 35
  • 38 Ozaydin-Ince G, Coclite AM, Gleason KK. Rep. Prog. Phys. 2012; 75: 016501
  • 39 Servi AT, Kharraz J, Klee D, Notarangelo K, Eyob B, Guillen-Burrieza E, Liu A, Arafat HA, Gleason KK. J. Membr. Sci. 2016; 520: 850
  • 40 Olceroglu E, Hsieh CY, Rahman MM, Lau KK, McCarthy M. Langmuir 2014; 30: 7556
  • 41 Dianat G, Movsesian N, Gupta M. Macromolecules 2018; 51: 10297
  • 42 Schwartz D, Nguyen T, Chen Z, Lau KKS, Grady MC, Shokoufandeh A, Soroush M. AIChE J. 2022; 68: e17674
  • 43 Chen Y, Ye Y, Chen Z-R. J. Mater. Sci. 2018; 54: 5907
  • 44 Wei X, Bradley LC. Langmuir 2022; 38: 11550
  • 45 Trujillo NJ, Baxamusa SH, Gleason KK. Chem. Mater. 2009; 21: 742
  • 46 Seidel S, Kwong P, Gupta M. Macromolecules 2013; 46: 2976
  • 47 Seidel S, Gupta M. J. Vac. Sci. Technol., A 2014; 32: 041514
  • 48 Bacheller S, Dianat G, Gupta M. ACS Appl. Polym. Mater. 2021; 3: 6366
  • 49 Welchert NA, Nguyen B, Tsotsis TT, Gupta M. Langmuir 2021; 37: 13859
  • 50 Kim H, Song Y, Park S, Kim Y, Mun H, Kim J, Kim S, Lee KG, Im SG. Adv. Funct. Mater. 2022; 32: 2113253
  • 51 Dianat G, Gao K, Prevoir S, Gupta M. ACS Appl. Polym. Mater. 2020; 2: 3339
  • 52 Su P, Liu W, Hong Y, Ye Y, Huang S. Mater. Today Chem. 2022; 24: 100786
  • 53 Armagan E, Ozaydin Ince G. Soft. Matter 2015; 11: 8069
  • 54 Karandikar P, Gupta M. Langmuir 2017; 33: 7701
  • 55 Oh MS, Song YS, Kim C, Kim J, You JB, Kim TS, Lee CS, Im SG. ACS Appl. Mater. Interfaces 2016; 8: 8782
  • 56 Mehrabani S, Kwong P, Gupta M, Armani AM. Appl. Phys. Lett. 2013; 102: 241101
  • 57 Song Q, Zhao R, Liu T, Gao L, Su C, Ye Y, Chan SY, Liu X, Wang K, Li P, Huang W. Chem. Eng. J. 2021; 418: 129368
  • 58 Matin A, Shafi H, Wang M, Khan Z, Gleason K, Rahman F. Desalination 2016; 379: 108
  • 59 Yang R, Xu J, Ozaydin-Ince G, Wong SY, Gleason KK. Chem. Mater. 2011; 23: 1263
  • 60 Wang H, Shi X, Gao A, Lin H, Chen Y, Ye Y, He J, Liu F, Deng G. Appl. Surf. Sci. 2018; 433: 869
  • 61 Reichstein W, Sommer L, Veziroglu S, Sayin S, Schroder S, Mishra YK, Saygili EI, Karayürek F, Açil Y, Wiltfang J, Gülses A, Faupel F, Cenk Aktas O. Polymers (Basel) 2021; 13: 186
  • 62 Zhi B, Song Q, Mao Y. RSC Adv. 2018; 8: 4779
  • 63 Christian P, Tumphart S, Ehmann HMA, Riegler H, Coclite AM, Werzer O. Sci. Rep. 2018; 8: 7134
  • 64 Ghasemi-Mobarakeh L, Werzer O, Keimel R, Kolahreez D, Hadley P, Coclite AM. J. Appl. Polym. Sci. 2019; 136: 47858
  • 65 Lee B, Jiao A, Yu S, You JB, Kim DH, Im SG. Acta. Biomater. 2013; 9: 7691
  • 66 Shi X, Ye Y, Wang H, Liu F, Wang Z. ACS Appl. Mater. Interfaces 2018; 10: 38449
  • 67 Tufani A, Ozaydin Ince G. J. Membr. Sci. 2017; 537: 255
  • 68 Tufani A, Ozaydin Ince G. J. Membr. Sci. 2019; 575: 126
  • 69 Kim MJ, Pak K, Hwang WS, Im SG, Cho BJ. ACS Appl. Mater. Interfaces 2018; 10: 37326
  • 70 Mohammadmoradi O, Çelik U, Misirlioglu IB, Ozaydin Ince G. Nanotechnology 2021; 32: 435601
  • 71 McMahon BJ, Pfluger CA, Sun B, Ziemer KS, Burkey DD, Carrier RL. J. Biomed. Mater. Res. Part A 2014; 102: 2375
  • 72 Fan R, Andrew TL. J. Electrochem. Soc. 2021; 168: 077518
  • 73 Franz G. Processes 2021; 9: 980
  • 74 Getnet TG, da Silva GF, Duarte IS, Kayama ME, Rangel EC, Cruz NC. Materials (Basel) 2020; 13: 3166
  • 75 Abessolo Ondo D, Loyer F, Boscher ND. Plasma Processes Polym. 2021; 18: 2000222
  • 76 Tenhaeff W, Gleason K. Adv. Funct. Mater. 2008; 18: 979
  • 77 Castro-Carranza A, Nolasco J, Bley S, Rückmann M, Meierhofer F, Mädler L, Voss T, Gutowski J. J. Polym. Sci., Part B: Polym. Phys. 2016; 54: 1537
  • 78 Oh WK, Kim S, Shin KH, Jang Y, Choi M, Jang J. Talanta 2013; 105: 333
  • 79 Cho J, Shin K-H, Jang J. Thin Solid Films 2010; 518: 5066
  • 80 Peřinka N, Držková M, Randjelović DV, Bondavalli P, Hajná M, Bober P, Syrový T, Bonnassieaux Y, Stejskal J. Key Eng. Mater. 2015; 644: 61
  • 81 Li X, Rafie A, Kalra V, Lau KKS. Langmuir 2020; 36: 13079
  • 82 Kim YK, Shin K-Y. Appl. Surf. Sci. 2021; 547: 149141
  • 83 Back J-W, Lee S, Hwang C-R, Chi C-S, Kim J-Y. Macromol. Res. 2011; 19: 33
  • 84 Jang J, Li XL, Oh JH. Chem. Commun. 2004; 794
  • 85 Xu G-L, Liu Q, Lau KKS, Liu Y, Liu X, Gao H, Zhou X, Zhuang M, Ren Y, Li J, Shao M, Ouyang M, Pan F, Chen Z, Amine K, Chen G. Nat. Energy 2019; 4: 484
  • 86 Tian L, Yin Y, Zhao J, Jin H, Shang Y, Yan S, Dong S. Mater. Lett. 2021; 285: 129141
  • 87 Cetinkaya M, Boduroglu S, Demirel MC. Polymer 2007; 48: 4130
  • 88 Demirel MC, Boduroglu S, Cetinkaya M, Lakhtakia A. Langmuir 2007; 23: 5861
  • 89 Wei L, Lakhtakia A. Mater. Res. Innovations 2013; 17: 129
  • 90 Chen HY, Rouillard JM, Gulari E, Lahann J. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 11173
  • 91 Moss T, Paulus IE, Raps D, Altstädt V, Greiner A. e-Polymers 2017; 17: 255
  • 92 Chiu Y-R, Hsu Y-T, Wu C-Y, Lin T-H, Yang Y-Z, Chen H-Y. Chem. Mater. 2020; 32: 1120
  • 93 Hu S-M, Lee C-Y, Chang Y-M, Xiao J-Q, Kusanagi T, Wu T-Y, Chang N-Y, Christy J, Chiu Y-R, Huang C-W, Yang Y-C, Chiang Y-C, Chen H-Y. Coatings 2021; 11: 466
  • 94 Lee CY, Hu SM, Xiao JQ, Chang YM, Kusanagi T, Wu TY, Chiu YR, Yang YC, Huang CW, Chen HY. Polymers (Basel) 2021; 13: 2073
  • 95 Wei L, Vogler EA, Ritty TM, Lakhtakia A. Mater. Sci. Eng., C 2011; 31: 1861
  • 96 Bäte M, Neuber C, Giesa R, Schmidt H-W. Macromol. Rapid Commun. 2004; 25: 371
  • 97 Neuber C, Bäte M, Giesa R, Schmidt H-W. J. Mater. Chem. 2006; 16: 3466
  • 98 Chang Y-M, Xiao J-Q, Christy J, Wu C-Y, Huang C-W, Wu T-Y, Chiang Y-C, Lin T-H, Chen H-Y. Mater. Today Bio. 2022; 16: 100403
  • 99 Wu T-Y, Lin T-H, Chen H-Y. Mater. Today Adv. 2022; 16: 100292
  • 100 Wu TY, Wu CY, Christy J, Chiang YC, Guan ZY, Yu J, Chen HY. Adv. Mater. Interfaces 2021; 8: 2100929
  • 101 Chiang YC, Yeh HW, Hu SM, Wu CY, Wu TY, Chen CH, Liao PC, Guan ZY, Cheng NC, Chen HY. Mater. Today Bio. 2022; 13: 100213
  • 102 Wu CY, Guo CL, Yang YC, Huang CW, Zeng JY, Guan ZY, Chiang YC, Wang PY, Chen HY. ACS Appl. Bio Mater. 2020; 3: 7193
  • 103 Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M, Schwarte C, Schaper A, Wendorff JH, Greiner A. Adv. Mater. 2000; 12: 637
  • 104 Tung HY, Guan ZY, Liu TY, Chen HY. Nat. Commun. 2018; 9: 2564
  • 105 Liu Y-C, Jhang J-W, Liu K, Pan H, Chen H-Y, Wang P-Y. Coatings 2022; 12: 311
  • 106 Sim JH, Chae H, Kim S-B, Yoo S. Sci. Rep. 2022; 12: 9506
  • 107 Coclite AM, Gleason KK. J. Appl. Phys. 2012; 111: 073516
  • 108 Shao J, Sheng W, Wang C, Ye Y. Chem. Eng. J. 2021; 416: 128043
  • 109 Luo Z, Lu Y, Singer DW, Berck ME, Somers LA, Goldsmith BR, Johnson ATC. Chem. Mater. 2011; 23: 1441
  • 110 Gharahcheshmeh MH, Tavakoli M, Gleason EF, Robinson MT, Kong J, Gleason K. Sci. Adv. 2019; 5: saay0414
  • 111 Drewelow G, Wook Song H, Jiang Z-T, Lee S. Appl. Surf. Sci. 2020; 501: 144105
  • 112 Wang X, Zhang X, Sun L, Lee D, Lee S, Wang M, Zhao J, Shao-Horn Y, Dincă M, Palacios T, Gleason KK. Sci. Adv. 2018; 4: eaat5780
  • 113 Kaviani S, Mohammadi Ghaleni M, Tavakoli E, Nejati S. ACS Appl. Polym. Mater. 2019; 1: 552
  • 114 Chen H-Y, Lahann J. Langmuir 2011; 27: 34
  • 115 Ortigoza-Diaz J, Scholten K, Larson C, Cobo A, Hudson T, Yoo J, Baldwin A, Weltman Hirschberg A, Meng E. Micromachines 2018; 9: 422
  • 116 Bally-Le Gall F, Friedmann C, Heinke L, Arslan H, Azucena C, Welle A, Ross AM, Wöll C, Lahann J. ACS Nano 2015; 9: 1400
  • 117 Hsu Y-T, Wu C-Y, Guan Z-Y, Sun H-Y, Mei C, Chen W-C, Cheng N-C, Yu J, Chen H-Y. Sci. Rep. 2019; 9: 7644
  • 118 Montero L, Baxamusa SH, Borros S, Gleason KK. Chem. Mater. 2009; 21: 399
  • 119 Chen Y-F, Khlyustova A, Yang R. J. Vac. Sci. Technol., A 2022; 40: 033406
  • 120 Kim MJ, Jeong J, Lee TI, Kim J, Tak Y, Park H, Im SG, Cho BJ. Macromol. Mater. Eng. 2021; 306: 2000608
  • 121 Schamberger F, Ziegler A, Franz G. J. Vac. Sci. Technol., B 2012; 30: 051801
  • 122 Chen L, Xu H, Li T, Zhang M, Han X, Jin Y, Wang W. J. Micromech. Microeng. 2022; 32: 044005
  • 123 Gołda M, Brzychczy-Włoch M, Faryna M, Engvall K, Kotarba A. Mater. Sci. Eng., C 2013; 33: 4221
  • 124 Brancato L, Decrop D, Lammertyn J, Puers R. Materials (Basel) 2018; 11: 1109
  • 125 Hsu JM, Rieth L, Kammer S, Orthner M, Solzbacher F. Sens. Mater. 2008; 20: 87
  • 126 Truong TL, Luong ND, Nam J-D, Lee Y, Choi HR, Koo JC, Nguyen HN. Macromol. Res. 2007; 15: 465
  • 127 Goktas H, Wang X, Ugur A, Gleason KK. Macromol. Rapid Commun. 2015; 36: 1283
  • 128 Amirzada MR, Tatzel A, Viereck V, Hillmer H. Appl. Nanosci. 2016; 6: 215
  • 129 Nie S, Li Z, Yao Y, Jin Y. Front. Chem. 2021; 9 DOI: 10.3389/fchem.2021.803509.
  • 130 Moni P, Lau J, Mohr AC, Lin TC, Tolbert SH, Dunn B, Gleason KK. ACS Appl. Energy Mater. 2018; 1: 7093
  • 131 Zhao J, Wang M, Gleason KK. Adv. Mater. Interfaces 2017; 4: 1700270
  • 132 Lee HS, Kim H, Lee JH, Kwak JB. Coatings 2019; 9: 430
  • 133 Jeong K, Kwak MJ, Kim Y, Lee Y, Mun H, Kim MJ, Cho BJ, Choi SQ, Im SG. Soft. Matter 2022; 18: 6907
  • 134 Smith PM, Su L, Gong W, Nakamura N, Reeja-Jayan B, Shen S. RSC Adv. 2018; 8: 19348
  • 135 Deng X, Lahann J. J. Appl. Polym. Sci. 2014; 131: 40315
  • 136 Sun H-Y, Fang C-Y, Lin T-J, Chen Y-C, Lin C-Y, Ho H-Y, Chen MH-C, Yu J, Lee D-J, Chang C-H, Chen H-Y. Adv. Mater. Interfaces 2014; 1: 1400093
  • 137 Chen PJ, Chen HY, Tsai WB. Polymers (Basel) 2022; 14: 225
  • 138 Im SG, Kim B-S, Lee LH, Tenhaeff WE, Hammond PT, Gleason KK. Macromol. Rapid Commun. 2008; 29: 1648
  • 139 Jiang X, Chen H-Y, Galvan G, Yoshida M, Lahann J. Adv. Funct. Mater. 2008; 18: 27
  • 140 Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H, Ozaydin-Ince G, Petruczok CD, Sreenivasan R, Tenhaeff WE, Trujillo NJ, Vaddiraju S, Xu J, Gleason KK. Adv. Mater. 2010; 22: 1993
  • 141 Li W, Bradley LC, Watkins JJ. ACS Appl. Mater. Interfaces 2019; 11: 5668
  • 142 Chiang YC, Ho CP, Wang YL, Chen PC, Wang PY, Chen HY. Polymers (Basel) 2019; 11: 1595
  • 143 Tung H-Y, Sun T-P, Sun H-Y, Guan Z-Y, Hu S-K, Chao L, Chen H-Y. Appl. Mater. Today 2017; 7: 77
  • 144 De Luna MM, Karandikar P, Gupta M. ACS Appl. Nano Mater. 2018; 1: 6575
  • 145 Vaddiraju S, Gleason KK. Nanotechnology 2010; 21: 125503
  • 146 Soto D, Ugur A, Farnham TA, Gleason KK, Varanasi KK. Adv. Funct. Mater. 2018; 28: 1707355
  • 147 Xu J, Gleason KK. Chem. Mater. 2010; 22: 1732
  • 148 Xu J, Zhang Y, Yu Q, Zhang L. Thin-Walled Struct. 2022; 170: 108619
  • 149 Inamuddin D, Mohammad A, Asiri AM. Organic-Inorganic Composite Polymer Electrolyte Membranes. Springer; Cham: 2017
  • 150 Tenhaeff WE, Gleason KK. Adv. Funct. Mater. 2008; 18: 979
  • 151 Gupta M, Kapur V, Pinkerton NM, Gleason KK. Chem. Mater. 2008; 20: 1646
  • 152 Nedaei M, Motezakker AR, Zeybek MC, Sezen M, Ince GO, Kosar A. Exp. Therm. Fluid Sci. 2017; 86: 130
  • 153 Chen HY, Elkasabi Y, Lahann J. J. Am. Chem. Soc. 2006; 128: 374
  • 154 Jang J, Lim B. Angew. Chem. Int. Ed. Engl. 2003; 42: 5600
  • 155 Malkov GS, Fisher ER. Plasma Processes Polym. 2010; 7: 695
  • 156 Sun H, Fu C, Gao Y, Guo P, Wang C, Yang W, Wang Q, Zhang C, Wang J, Xu J. Nanotechnology 2018; 29: 305601
  • 157 Jeong G, Oh J, Jang J. Biosens. Bioelectron. 2019; 131: 30
  • 158 Mansurnezhad R, Ghasemi-Mobarakeh L, Coclite AM, Beigi MH, Gharibi H, Werzer O, Khodadadi-Khorzoughi M, Nasr-Esfahani MH. Mater. Sci. Eng., C. 2020; 110: 110623
  • 159 Beauregard N, Al-Furaiji M, Dias G, Worthington M, Suresh A, Srivastava R, Burkey DD, McCutcheon JR. Polymers (Basel) 2020; 12: 2074
  • 160 Vilaro I, Yague JL, Borros S. ACS Appl. Mater. Interfaces 2017; 9: 1057
  • 161 Dianat G, Seidel S, De Luna MM, Gupta M. Macromol. Mater. Eng. 2016; 301: 1037
  • 162 Demirel MC. Colloids Surf., A 2008; 321: 121
  • 163 Huang X, Sun M, Shi X, Shao J, Jin M, Liu W, Zhang R, Huang S, Ye Y. Chem. Eng. J. 2023; 454: 139981
  • 164 Enright RN, Bradley LC. Adv. Funct. Mater. 2022; 32: 2204887
  • 165 Chen HY, Lahann J. Adv. Mater. 2007; 19: 3801
  • 166 Deng X, Friedmann C, Lahann J. Angew. Chem. Int. Ed. Engl. 2011; 50: 6522
  • 167 Bally-Le Gall F, Hussal C, Kramer J, Cheng K, Kumar R, Eyster T, Baek A, Trouillet V, Nieger M, Bräse S, Lahann J. Chem. – Eur. J. 2017; 23: 13342
  • 168 Bally F, Cheng K, Nandivada H, Deng X, Ross AM, Panades A, Lahann J. ACS Appl. Mater. Interfaces 2013; 5: 9262
  • 169 Ross A, Durmaz H, Cheng K, Deng X, Liu Y, Oh J, Chen Z, Lahann J. Langmuir 2015; 31: 5123
  • 170 Jiang X, Chen HY, Galvan G, Yoshida M, Lahann J. Adv. Funct. Mater. 2008; 18: 27
  • 171 Suh KY, Langer R, Lahann J. Appl. Phys. Lett. 2003; 83: 4250
  • 172 Andou Y, Nishida H, Endo T. Chem. Commun. 2006; 48: 5018
  • 173 Gomi S, Andou Y, Nishida H. J. Photopolym. Sci. Technol. 2016; 29: 17
  • 174 Jang J, Lim B, Choi M. Chem. Commun. 2005; 4214
  • 175 Ohsawa Y, Takahashi R, Maruyama S, Matsumoto Y. ACS Macro Lett. 2016; 5: 1009
  • 176 Takahashi R, Maruyama S, Ohsawa Y, Matsumoto Y. Chem. Lett. 2018; 47: 1460
  • 177 Watanabe H, Takazawa R, Takahashi R, Maruyama S, Matsumoto Y. ACS Appl. Nano Mater. 2020; 3: 9610
  • 178 Tao R, Anthamatten M. Macromol. Rapid Commun. 2013; 34: 1755
  • 179 Tao R, Anthamatten M. Macromol. Mater. Eng. 2015; 301: 99
  • 180 Huo N, Ye S, Ouderkirk AJ, Tenhaeff WE. ACS Appl. Polym. Mater. 2022; 4: 7300
  • 181 Elkasabi YM, Lahann J, Krebsbach PH. Biomaterials 2011; 32: 1809
  • 182 Elkasabi Y, Ross AM, Oh J, Hoepfner MP, Fogler HS, Lahann J, Krebsbach PH. Chem. Vap. Deposition 2014; 20: 23
  • 183 Ozaydin-Ince G, Gleason KK, Demirel MC. Soft Matter 2011; 7: 638
  • 184 Wu C-Y, Kuo P-H, Duh J-G. Surf. Coat. Technol. 2021; 421: 127418
  • 185 Balkan A, Armagan E, Ozaydin Ince G. Beilstein J. Nanotechnol. 2017; 8: 872
  • 186 Ozaydin Ince G, Demirel G, Gleason KK, Demirel MC. Soft Matter 2010; 6: 1635
  • 187 Ince GO, Armagan E, Erdogan H, Buyukserin F, Uzun L, Demirel G. ACS Appl. Mater. Interfaces 2013; 5: 6447
  • 188 Franklin T, Streever DL, Yang R. Chem. Mater. 2022; 34: 5960
  • 189 Su C, Hu Y, Song Q, Ye Y, Gao L, Li P, Ye T. ACS Appl. Mater. Interfaces 2020; 12: 18978
  • 190 Su C, Ye Y, Qiu H, Zhu Y. ACS Appl. Mater. Interfaces 2021; 13: 10553
  • 191 Liu Z, Jiang X, Li Z, Zheng Y, Nie J-J, Cui Z, Liang Y, Zhu S, Chen D, Wu S. Chem. Eng. J. 2022; 437: 135401
  • 192 Cihanoğlu G, Ebil Ö. J. Mater. Sci. 2021; 56: 11970
  • 193 Guo L, Li J, Zhang X, Guo S. Prog. Org. Coat. 2022; 172: 107099
  • 194 Xia T, Liu W, Ye Y. J. Mater. Sci. 2022; 57: 8314
  • 195 Perrotta A, Werzer O, Coclite AM. Adv. Eng. Mater. 2018; 20: 1700639
  • 196 Cong S, Liu X, Guo F. Int. J. Heat Mass Transfer 2019; 129: 764
  • 197 Tufani A, Ozaydin Ince G. J. Appl. Polym. Sci. 2015; 132: 42453
  • 198 Wu J-T, Wu C-Y, Fan S-K, Hsieh C-C, Hou Y-C, Chen H-Y. Chem. Mater. 2015; 27: 7028
  • 199 Jung IY, You JB, Choi BR, Kim JS, Lee HK, Jang B, Jeong HS, Lee K, Im SG, Lee H. Adv. Healthcare Mater. 2016; 5: 2168
  • 200 Kim MJ, Lee C, Jeong J, Kim S, Lee TI, Shin EJ, Hwang WS, Im SG, Cho BJ. Adv. Electron. Mater. 2021; 7: 2001197
  • 201 Jeong J, Kim MJ, Hwang WS, Cho BJ. Adv. Electron. Mater. 2021; 7: 2100375
  • 202 Khalil K, Soto D, Farnham T, Paxson A, Katmis AU, Gleason K, Varanasi KK. Joule 2019; 3: 1377
  • 203 Nejati S, Lau KK. Nano Lett. 2011; 11: 419
  • 204 Sreenivasan R, Bassett EK, Hoganson DM, Vacanti JP, Gleason KK. Biomaterials 2011; 32: 3883