Hamostaseologie 2023; 43(04): 252-260
DOI: 10.1055/a-2088-1801
Review Article

Thrombocytopenia Absent Radius (TAR)-Syndrome: From Current Genetics to Patient Self-Empowerment

Gabriele Strauss
1   Department of Paediatric Haematology and Oncology, Helios-Klinikum Buch, Berlin, Germany
,
2   Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
,
Eva Klopocki
3   Institute of Human Genetics, University of Würzburg, Würzburg, Germany
,
2   Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
4   Center for Rare Blood Cell Disorders, Center for Rare Diseases, University Hospital Würzburg, Würzburg, Germany
› Author Affiliations

Abstract

Thrombocytopenia absent radius (TAR) syndrome is a rare form of hereditary thrombocytopenia associated with a bilateral radial aplasia. TAR syndrome is genetically defined by the combination of a microdeletion on chromosome 1 which includes the gene RBM8A, and a single nucleotide polymorphism (SNP) in the second RBM8A allele. While most patients with TAR syndrome harbor a SNP in either the 5′ UTR region or in intron 1 of RBM8A, further SNPs associated with TAR syndrome are still being identified. Here, we report on the current understanding of the genetic basis, diagnosis, and therapy of TAR syndrome and discuss patient self-empowerment by enabling networking and exchange between affected individuals and families.

Authors' Contributions

G.S. treated patients and wrote the manuscript. K.M. and H.S. performed TAR diagnostics and wrote the manuscript. E.K. performed genetic diagnostics of TAR syndrome and wrote the manuscript.


Competing Interests

The authors declare no competing interests.




Publication History

Received: 16 February 2023

Accepted: 31 May 2023

Article published online:
23 August 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Shaw S, Oliver RA. Congenital hypoplastic thrombocytopenia with skeletal deformities in siblings. Blood 1959; 14 (04) 374-377
  • 2 Greenwald HM, Sherman I. Congenital essential thrombocytopenia. Am J Dis Child 1929; 38: 1245-1251
  • 3 Hall JG, Levin J, Kuhn JP, Ottenheimer EJ, van Berkum KA, McKusick VA. Thrombocytopenia with absent radius (TAR). Medicine (Baltimore) 1969; 48 (06) 411-439
  • 4 Hall JG. Thrombocytopenia and absent radius (TAR) syndrome. J Med Genet 1987; 24 (02) 79-83
  • 5 Hedberg VA, Lipton JM. Thrombocytopenia with absent radii. A review of 100 cases. Am J Pediatr Hematol Oncol 1988; 10 (01) 51-64
  • 6 Greenhalgh KL, Howell RT, Bottani A. et al. Thrombocytopenia-absent radius syndrome: a clinical genetic study. J Med Genet 2002; 39 (12) 876-881
  • 7 Geddis AE. Congenital amegakaryocytic thrombocytopenia and thrombocytopenia with absent radii. Hematol Oncol Clin North Am 2009; 23 (02) 321-331
  • 8 Klopocki E, Schulze H, Strauss G. et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am J Hum Genet 2007; 80 (02) 232-240
  • 9 Albers CA, Paul DS, Schulze H. et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 2012; 44 (04) 435-439 , S1–S2
  • 10 Manukjan G, Bösing H, Schmugge M, Strauß G, Schulze H. Impact of genetic variants on haematopoiesis in patients with thrombocytopenia absent radii (TAR) syndrome. Br J Haematol 2017; 179 (04) 606-617
  • 11 Boussion S, Escande F, Jourdain AS. et al. TAR syndrome: clinical and molecular characterization of a cohort of 26 patients and description of novel noncoding variants of RBM8A. Hum Mutat 2020; 41 (07) 1220-1225
  • 12 Brodie SA, Rodriguez-Aulet JP, Giri N. et al. 1q21.1 deletion and a rare functional polymorphism in siblings with thrombocytopenia-absent radius-like phenotypes. Cold Spring Harb Mol Case Stud 2019; 5 (06) a004564
  • 13 Monteiro C, Gonçalves A, Oliveira J. et al. Thrombocytopenia-absent radius syndrome: descriptions of three new cases and a novel splicing variant in RBM8A that expands the spectrum of null alleles. Int J Mol Sci 2022; 23 (17) 9621
  • 14 de Alarcon PA, Graeve JA, Levine RF, McDonald TP, Beal DW. Thrombocytopenia and absent radii syndrome: defective megakaryocytopoiesis-thrombocytopoiesis. Am J Pediatr Hematol Oncol 1991; 13 (01) 77-83
  • 15 Ballmaier M, Schulze H, Strauss G. et al. Thrombopoietin in patients with congenital thrombocytopenia and absent radii: elevated serum levels, normal receptor expression, but defective reactivity to thrombopoietin. Blood 1997; 90 (02) 612-619
  • 16 Letestu R, Vitrat N, Massé A. et al. Existence of a differentiation blockage at the stage of a megakaryocyte precursor in the thrombocytopenia and absent radii (TAR) syndrome. Blood 2000; 95 (05) 1633-1641
  • 17 Strippoli P, Savoia A, Iolascon A. et al. Mutational screening of thrombopoietin receptor gene (c-mpl) in patients with congenital thrombocytopenia and absent radii (TAR). Br J Haematol 1998; 103 (02) 311-314
  • 18 Ballmaier M, Schulze H, Cremer M, Folman CC, Strauss G, Welte K. Defective c-Mpl signaling in the syndrome of thrombocytopenia with absent radii. Stem Cells 1998; 16 (Suppl 2): 177-184
  • 19 Ballmaier M, Germeshausen M, Schulze H. et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 2001; 97 (01) 139-146
  • 20 Asthana S, Martin H, Rupkey J. et al. The physiological roles of the exon junction complex in development and diseases. Cells 2022; 11 (07) 1192
  • 21 Graubert TA, Shen D, Ding L. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 2011; 44 (01) 53-57
  • 22 Quesada V, Conde L, Villamor N. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011; 44 (01) 47-52
  • 23 Hahn CN, Scott HS. Spliceosome mutations in hematopoietic malignancies. Nat Genet 2011; 44 (01) 9-10
  • 24 Brunetti-Pierri N, Berg JS, Scaglia F. et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 2008; 40 (12) 1466-1471
  • 25 Weterman MA, Wilbrink M, Dijkhuizen T, van den Berg E, Geurts van Kessel A. Fine mapping of the 1q21 breakpoint of the papillary renal cell carcinoma-associated (X;1) translocation. Hum Genet 1996; 98 (01) 16-21
  • 26 Chung CD, Liao J, Liu B. et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science 1997; 278 (5344): 1803-1805
  • 27 Brantley EC, Nabors LB, Gillespie GY. et al. Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res 2008; 14 (15) 4694-4704
  • 28 Ezumi Y, Takayama H, Okuma M. Thrombopoietin, c-Mpl ligand, induces tyrosine phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggregation in platelets in vitro. FEBS Lett 1995; 374 (01) 48-52
  • 29 Schulze H, Ballmaier M, Welte K, Germeshausen M. Thrombopoietin induces the generation of distinct Stat1, Stat3, Stat5a and Stat5b homo- and heterodimeric complexes with different kinetics in human platelets. Exp Hematol 2000; 28 (03) 294-304
  • 30 Hikata T, Takaishi H, Takito J. et al. PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts. Blood 2009; 113 (10) 2202-2212
  • 31 Al-Qattan MM. The pathogenesis of radial ray deficiency in thrombocytopenia-absent radius (TAR) syndrome. J Coll Physicians Surg Pak 2016; 26 (11) 912-916
  • 32 Bonsi L, Marchionni C, Alviano F. et al. Thrombocytopenia with absent radii (TAR) syndrome: from hemopoietic progenitor to mesenchymal stromal cell disease?. Exp Hematol 2009; 37 (01) 1-7
  • 33 Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 1995; 375 (6534): 791-795
  • 34 Thompson AA, Nguyen LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet 2000; 26 (04) 397-398
  • 35 Mao H, Pilaz LJ, McMahon JJ. et al. Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly. J Neurosci 2015; 35 (18) 7003-7018
  • 36 Su CH, Liao WJ, Ke WC, Yang RB, Tarn WY. The Y14-p53 regulatory circuit in megakaryocyte differentiation and thrombocytopenia. iScience 2021; 24 (11) 103368
  • 37 Gangras P, Gallagher TL, Parthun MA. et al. Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3' UTR intron-containing NMD targets. PLoS Genet 2020; 16 (06) e1008830
  • 38 Fiedler J, Strauss G, Wannack M. et al. Two patterns of thrombopoietin signaling suggest no coupling between platelet production and thrombopoietin reactivity in thrombocytopenia-absent radii syndrome. Haematologica 2012; 97 (01) 73-81
  • 39 Rao VS, Shenoi UD, Krishnamurthy PN. Acute myeloid leukemia in TAR syndrome. Indian J Pediatr 1997; 64 (04) 563-565
  • 40 Fadoo Z, Naqvi SM. Acute myeloid leukemia in a patient with thrombocytopenia with absent radii syndrome. J Pediatr Hematol Oncol 2002; 24 (02) 134-135
  • 41 Jameson-Lee M, Chen K, Ritchie E, Shore T, Al-Khattab O, Gergis U. Acute myeloid leukemia in a patient with thrombocytopenia with absent radii: a case report and review of the literature. Hematol Oncol Stem Cell Ther 2018; 11 (04) 245-247
  • 42 Go RS, Johnston KL. Acute myelogenous leukemia in an adult with thrombocytopenia with absent radii syndrome. Eur J Haematol 2003; 70 (04) 246-248
  • 43 Camitta BM, Rock A. Acute lymphoidic leukemia in a patient with thrombocytopenia/absent radii (TAR) syndrome. Am J Pediatr Hematol Oncol 1993; 15 (03) 335-337
  • 44 Elmakky A, Stanghellini I, Landi A, Percesepe A. Role of genetic factors in the pathogenesis of radial deficiencies in humans. Curr Genomics 2015; 16 (04) 264-278
  • 45 Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology (Am Soc Hematol Educ Program) 2007; 2007: 29-39
  • 46 McLaurin TM, Bukrey CD, Lovett RJ, Mochel DM. Management of thrombocytopenia-absent radius (TAR) syndrome. J Pediatr Orthop 1999; 19 (03) 289-296
  • 47 Coccia P, Ruggiero A, Mastrangelo S. et al. Management of children with thrombocytopenia-absent radius syndrome: an institutional experience. J Paediatr Child Health 2012; 48 (02) 166-169
  • 48 Kumar C, Sharma D, Pandita A, Bhalerao S. Thrombocytopenia absent radius syndrome with tetralogy of Fallot: a rare association. Int Med Case Rep J 2015; 8: 81-85
  • 49 Naseh A, Hafizi A, Malek F. et al. TAR syndrome, a rare case report with cleft lip/palate. Internet J Pediatr Neonatol 2012; 14: 14289
  • 50 Ahmad R, Pope S. Association of Mayer-Rokitansky-Küster-Hauser syndrome with thrombocytopenia absent radii syndrome: a rare presentation. Eur J Obstet Gynecol Reprod Biol 2008; 139 (02) 257-258
  • 51 Bot-Robin V, Vaast P, Deruelle P. Exacerbation of thrombocytopenia in a pregnant woman with thrombocytopenia-absent radius syndrome. Int J Gynaecol Obstet 2011; 114 (01) 77-78
  • 52 Diep RT, Arcasoy MO. Pregnancy in patients with thrombocytopenia and absent radii (TAR) syndrome. Ann Hematol 2017; 96 (09) 1589-1590
  • 53 Niihori T, Ouchi-Uchiyama M, Sasahara Y. et al. Mutations in MECOM, encoding oncoprotein EVI1, cause radioulnar synostosis with amegakaryocytic thrombocytopenia. Am J Hum Genet 2015; 97 (06) 848-854
  • 54 Gallastegui N, Dudkiewicz PB, Jy W. et al. Romiplostim (Nplate®) and Oprelvekin (Neumega®) correct thrombocytopenia in TAR syndrome (thrombocytopenia with absent radii). Blood 2017; 130: 4953-4953
  • 55 Kim J, Kewcharoen J, Lum CJ, Azuma SS. Uncommon obstacle: management of end-stage heart failure in thrombocytopenia with absent radii (TAR) syndrome. BMJ Case Rep 2021; 14 (07) e243127
  • 56 Sultan Y, Scrobohaci ML, Rendu F, Caen JP. Abnormal platelet function, population, and survival-time in a boy with congenital absent radii and thrombocytopenia. Lancet 1972; 2 (7778): 653
  • 57 Day HJ, Holmsen H. Platelet adenine nucleotide “storage pool deficiency” in thrombocytopenic absent radii syndrome. JAMA 1972; 221 (09) 1053-1054
  • 58 Tongsong T, Sirichotiyakul S, Chanprapaph P. Prenatal diagnosis of thrombocytopenia-absent-radius (TAR) syndrome. Ultrasound Obstet Gynecol 2000; 15 (03) 256-258
  • 59 Papoulidis I, Oikonomidou E, Orru S. et al. Prenatal detection of TAR syndrome in a fetus with compound inheritance of an RBM8A SNP and a 334‑kb deletion: a case report. Mol Med Rep 2014; 9 (01) 163-165
  • 60 Baken L, Groenenberg IAL, Hoogeboom AJM, Koning AHJ, Exalto N. First-trimester diagnosis of thrombocytopenia-absent radius syndrome using virtual reality. Clin Dysmorphol 2014; 23 (02) 71-73
  • 61 Espinoza AF, Krispin E, Cortes MS. et al. Prenatal diagnosis and management of thrombocytopenia-absent radius syndrome. Neoreviews 2022; 23 (06) e429-e433
  • 62 Bottillo I, Castori M, De Bernardo C. et al. Prenatal diagnosis and post-mortem examination in a fetus with thrombocytopenia-absent radius (TAR) syndrome due to compound heterozygosity for a 1q21.1 microdeletion and a RBM8A hypomorphic allele: a case report. BMC Res Notes 2013; 6: 376
  • 63 Vainauskienė V, Vaitkienė R. Foresight study on online health community: The perspective of knowledge empowerment for patients with chronic diseases. Int J Health Plann Manage 2022; 37 (04) 2354-2375
  • 64 Bösing H. Klinische und funktionelle Untersuchungen zur Hämatopoese beim Thrombocytopenia Absent Radii (TAR-) Syndrom. Doctoral thesis 2018; 43-45 https://d-nb.info/1160515301/34