CC BY 4.0 · SynOpen 2023; 07(02): 272-276
DOI: 10.1055/a-2089-0485
letter
Virtual Collection Electrochemical Organic Synthesis

Electrochemical/I Dual-Catalyzed Access to Sulfonated Pyrazoles under External Oxidant-Free Conditions

Jing Ma
,
Jianjing Yang
,
Kelu Yan
,
Boju Luo
,
Kexin Huang
,
Ziling Wu
,
Yumeng Zhou
,
Shuyun Zhu
,
Xian-En Zhao
,
Jiangwei Wen
This work was supported by the National Natural Science Foundation of China (No. 21902083, 22076097) and the Natural Science Foundation of Shandong Province (No. ZR2020QB130). This work was also supported by the Talent Program Foundation of Qufu Normal University (No. 6132 and 6125).


Abstract

An electrochemical/I dual-catalyzed access to sulfonated pyrazoles from pyrazolones and sodium sulfites under external oxidant-free conditions has been developed. This established electrochemical reaction works smoothly under external oxidant-free conditions and has the advantages of good functional group tolerance, easy to gram-scale synthesis, delivering up to 95% yield for 35 examples.

Supporting Information



Publication History

Received: 28 March 2023

Accepted after revision: 27 April 2023

Accepted Manuscript online:
08 May 2023

Article published online:
07 June 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Becker DP, Barta TE, Bedell LJ, Boehm TL, Bond BR, Carroll J, Carron CP, DeCrescenzo GA, Easton AM, Freskos JN, Funckes-Shippy CL, Heron M, Hockerman S, Howard CP, Kiefer JR, Li MH, Mathis KJ, McDonald JJ, Mehta PP, Munie GE, Sunyer T, Swearingen CA, Villamil CI, Welsch D, Williams JM, Yu Y, Yao J. J. Med. Chem. 2010; 53: 6653
    • 1b Jacob C. Nat. Prod. Rep. 2006; 23: 851
    • 1c Khanum F, Anilakumar KR, Viswanathan KR. Crit. Rev. Food Sci. Nutr. 2004; 44: 479
    • 1d Kotha S, Chavan AS. J. Org. Chem. 2010; 75: 4319
    • 1e Li P, Wang L, Wang X. J. Heterocycl. Chem. 2021; 58: 28
    • 1f Feng M, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
  • 2 McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348; https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster (accessed June 1, 2023).
    • 3a Meadows DC, Gervay Hague J. Med. Res. Rev. 2006; 26: 793
    • 3b Alba AN, Companyo X, Rios R. Chem. Soc. Rev. 2010; 39: 2018
    • 3c Xu K, Khakyzadeh V, Bury T, Breit B. J. Am. Chem. Soc. 2014; 136: 16124
    • 3d Li Y, Fan Y. Synth. Commun. 2019; 49: 3227
    • 3e Trost BM, Kalnmals CA. Chem. Eur. J. 2019; 25: 11193
    • 3f Chen S, Li Y, Wang M, Jiang X. Green Chem. 2020; 22: 322
    • 3g Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M. Adv. Synth. Catal. 2020; 362: 65
    • 3h Li K, Wang M, Jiang X. CCS Chem. 2021; 4: 1526
    • 3i Ahmadi R, Emami S. Eur. J. Med. Chem. 2022; 234: 114255
    • 3j Wang M, Jiang X. ACS Sustainable Chem. Eng. 2022; 10: 671
    • 4a Xu K, Li L, Yan W, Wu Y, Wang Z, Zhang S. Green Chem. 2017; 19: 4494
    • 4b Sun C.-C, Xu K, Zeng C.-C. ACS Sustainable Chem. Eng. 2019; 7: 2255
    • 4c Tao X, Sheng R, Bao K, Wang Y, Jin Y. Chin. J. Org. Chem. 2019; 39: 2726
    • 4d Hua X, Liu N, Zhou S, Zhang L, Yin H, Wang G, Fan Z, Ma Y. Engineering 2020; 6: 553
    • 4e Jiang S, Yu Y, Li D, Chen Z, He Y, Li M, Yang G.-X, Qiu W, Yang Z, Gan YLin J, Ma Y, Su SJ. Angew. Chem. Int. Ed. 2023; 62: 202218892
    • 5a Magedov IV, Manpadi M, Van Slambrouck S, Steelant WF. A, Rozhkova E, Przheval'skii NM, Rogelj S, Kornienko A. J. Med. Chem. 2007; 50: 5183
    • 5b Özdemir Z, Kandilci HB, Gümüşel B, Çalış Ü, Bilgin AA. Eur. J. Med. Chem. 2007; 42: 373
    • 5c Velaparthi S, Brunsteiner M, Uddin R, Wan B, Franzblau SG, Petukhov PA. J. Med. Chem. 2008; 51: 1999
    • 5d Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 6a Padwa A, Woods Wannamaker M. Tetrahedron 1990; 46: 1145
    • 6b Gao D, Zhai H, Parvez M, Back TG. J. Org. Chem. 2008; 73: 8057
    • 6c Kumar R, Namboothiri IN. N. Org. Lett. 2011; 13: 4016
    • 6d Kumar R, Verma D, Mobin SM, Namboothiri IN. N. Org. Lett. 2012; 14: 4070
    • 6e Zhu Y, Lu W.-T, Sun H.-C, Zhan Z.-P. Org. Lett. 2013; 15: 4146
    • 6f Zhao X, Zhang L, Li T, Liu G, Wang H, Lu K. Chem. Commun. 2014; 50: 13121
    • 6g Liu X, Cui H, Yang D, Dai S, Zhang T, Sun J, Wei W, Wang H. RSC Adv. 2016; 6: 51830
    • 6h Yang D, Sun P, Wei W, Meng L, He L, Fang B, Jiang W, Wang H. Org. Chem. Front. 2016; 3: 1457
    • 6i Sun P, Yang D, Wei W, Jiang L, Wang Y, Dai T, Wang H. Org. Chem. Front. 2017; 4: 1367
  • 7 Nassar E, Abdel-Aziz HA, Ibrahim HS, Mansour AM. Sci. Pharm. 2011; 79: 507
  • 8 Wang B.-L, Li Q.-N, Zhan Y.-Z, Xiong L.-X, Yu S.-J, Li Z.-M. Phosphorus, Sulfur Silicon Relat. Elem. 2014; 189: 483
  • 9 Hoy SM. Drugs 2019; 79: 2001
    • 10a Shaughnessy CA, Zeitlin PL, Bratcher PE. Sci. Rep. 2021; 11: 19810
    • 10b Zaher A, ElSaygh J, Elsori D, ElSaygh H, Sanni A. Cureus 2021; 13: e16144
  • 11 Wei W, Cui H, Yang D, Liu X, He C, Dai S, Wang H. Org. Chem. Front. 2017; 4: 26
  • 12 Li L.-X, Dong D.-Q, Hao S.-H, Wang Z.-L. Tetrahedron Lett. 2018; 59: 1517
    • 13a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 13b Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 13c Liu Y, Yi H, Lei A. Chin. J. Chem. 2018; 36: 692
    • 13d Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
    • 13e Xiong P, Xu HC. Acc. Chem. Res. 2019; 52: 3339
    • 13f Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Acc. Chem. Res. 2020; 53: 300
    • 13g Yamamoto K, Kuriyama M, Onomura O. Acc. Chem. Res. 2020; 53: 105
    • 13h Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 13i Yang J, Qin H, Yan K, Cheng X, Wen J. Adv. Synth. Catal. 2021; 363: 5407
    • 14a Niu C, Yang J, Yan K, Xie J, Jiang W, Li B, Wen J. iScience 2022; 25: 104253
    • 14b Sun X, Yang J, Yan K, Zhuang X, Yu J, Song X, Zhang F, Li B, Wen J. Chem. Commun. 2022; 58: 8238
    • 14c Zeng T, Yang J, Yan K, Wang S, Zhu S, Zhao X.-E, Li D, Wen J. Org. Chem. Front. 2022; 9: 6305
    • 15a Wen J, Yang X, Sun Z, Yang J, Han P, Liu Q, Dong H, Gu M, Huang L, Wang H. Green Chem. 2020; 22: 230
    • 15b Yang X, Yang J, Yan K, Qin H, Dong W, Wen J, Wang H. Eur. J. Org. Chem. 2020; 3456
    • 15c Sun X, Zhang F, Yan K, Feng W, Sun X, Yang J, Wen J. Adv. Synth. Catal. 2021; 363: 3485
    • 15d Yang J, Dong H, Yan K, Song X, Yu J, Wen J. Adv. Synth. Catal. 2021; 363: 5417
    • 15e Yang J, Sun Z, Yan K, Dong H, Dong H, Cui J, Gong X, Han S, Huang L, Wen J. Green Chem. 2021; 23: 2756
  • 16 Ma J, Yang J, Yan K, Sun X, Wei W, Tian L, Wen J. Eur. J. Org. Chem. 2021; 5491
  • 17 General Procedure In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, a (0.25 mmol), b (0.5 mmol), and NH4I (30 mol%, 10.8 mg) were combined and added. The flask was equipped with carbon rod as the anode, Pt plate (1 × 1 cm2) as the cathode and was then charged with nitrogen. Under the protection of nitrogen, CH3CN/H2O (6.3 mL, v = 3: 0.1) was slowly injected into the reaction flask. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under room temperature for 2 h. When the reaction was finished and monitored by TLC, the solution was concentrated in a vacuum and the pure product 1c-35c was obtained by flash column chromatography on silica gel. 1H and 13C NMR and other analytical data of compounds 1c, 2c, 5c, 9c, 10c14c, 16c, 19c, 22c24c, 27c29c, 31c, 32c are reported in the literature.11,12 1-(4-Methoxyphenyl)-3-methyl-4-tosyl-1H-pyrazol-5-ol (3c)Synthesized in accordance with the general procedure for electrochemical/I dual-catalyzed access to sulfonated pyrazoles performed in an undivided cell, using 2-(4-methoxyphenyl)-5-methyl-2,4-dihydro-3H-pyrazol-3-one (3a, 0.25 mmol, 51.0 mg), sodium 4-methylbenzenesulfinate (2b, 0.5 mmol, 89.0 mg), and NH4I (30 mol%, 10.8 mg) with CH3CN/H2O (6.3 mL, v = 3: 0.1) as the solvent. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under room temperature for 2 h. The desired product (yield 74.4 mg, 0.21 mmol, 83%) was obtained as a white solid; mp 127–130 °C. 1H NMR (500 MHz, DMSO): δ = 7.87 (d, J = 7.9 Hz, 2 H), 7.82 (d, J = 9.0 Hz, 2 H), 7.29 (d, J = 6.8 Hz, 2 H), 6.85 (d, J = 7.9 Hz, 2 H), 3.71 (s, 3 H), 2.33 (s, 3 H), 2.17 (s, 3 H). 13C NMR (126 MHz, DMSO): δ = 160.3, 156.2, 145.5, 143.0, 142.5, 133.4, 129.7, 126.1, 121.3, 114.0, 97.2, 55.6, 21.3, 14.6. HRMS (EI): m/z calcd for C18H18N2O4S [M + H]+: 359.1061; found: 359.1060.