Subscribe to RSS
DOI: 10.1055/a-2089-4260
Chemo-, Regio-, and Stereoselective Access to (E)-Boryl-Substituted Allyl Fluorides via Electrophilic Fluorodesilylation
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant no. NRF-2022R1A2C3004731). Y.J. thanks the NRF for a Ph.D. fellowship (NRF-2021R1A6A3A13038576).
Abstract
Herein, we report a transition-metal-free chemo-, regio-, and stereoselective electrophilic fluorodesilylation of α-silyl-substituted allylboronate esters. α-Silyl-substituted allylboronate esters can be chemoselectively coupled with Selectfluor, resulting in a variety of (E)-boryl-substituted allyl fluorides in good yields with γ- and (E)-selectivities. The utilities of the obtained (E)-boryl-substituted allyl fluorides are highlighted by further modifications to afford allyl or alkyl fluoride derivatives.
Key words
allyl fluorides - chemoselectivity - fluorodesilylation - regioselectivity - stereoselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2089-4260.
- Supporting Information
Publication History
Received: 20 April 2023
Accepted after revision: 09 May 2023
Accepted Manuscript online:
09 May 2023
Article published online:
14 June 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 1b Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 1c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1d Wang J, Sánchez-Roselló M, Aceña JL, Pozo CD, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 2 Khan MO. F, Lee HJ. Chem. Rev. 2008; 108: 5131
- 3 Pacheco MC, Purser S, Gouverneur V. Chem. Rev. 2008; 108: 1943
- 4a Middleton WJ. J. Org. Chem. 1975; 40: 574
- 4b Munyemana F, Frisque-Hesbain A.-M, Devos A, Ghosez L. Tetrahedron Lett. 1989; 30: 3077
- 4c Kozikowski AP, Wu J.-P. Tetrahedron Lett. 1990; 31: 4309
- 5a Hollingworth C, Gouverneur V. Chem. Commun. 2012; 48: 2929
- 5b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 5c Wu J. Tetrahedron Lett. 2014; 55: 4289
- 5d Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
- 5e Sorlin AM, Usman FO, English CK, Nguyen HM. ACS Catal. 2020; 10: 11980
- 6 Tredwell M, Gouverneur V. Org. Biomol. Chem. 2006; 4: 26
- 7a Greedy B, Paris J.-M, Vidal T, Gouverneur V. Angew. Chem. Int. Ed. 2003; 42: 3291
- 7b Thibaudeau S, Gouverneur V. Org. Lett. 2003; 5: 4891
- 7c Giuffredi G, Bobbio C, Gouverneur V. J. Org. Chem. 2006; 71: 5361
- 7d Purser S, Odell B, Claridge TD. W, Moore PR, Gouverneur V. Chem. Eur. J. 2006; 12: 9176
- 7e Lam Y.-h, Bobbio C, Cooper IR, Gouverneur V. Angew. Chem. Int. Ed. 2007; 46: 5106
- 7f Purser S, Wilson C, Moore PR, Gouverneur V. Synlett 2007; 1166
- 7g Teare H, Robins EG, Årstad E, Luthra SK, Gouverneur V. Chem. Commun. 2007; 2330
- 7h Ishimaru T, Shibata N, Horikawa T, Yasuda N, Nakamura S, Toru T. Angew. Chem. Int. Ed. 2008; 47: 4157
- 7i Purser S, Claridge TD. W, Odell B, Moore PR, Gouverneur V. Org. Lett. 2008; 10: 4263
- 7j Giuffredi GT, Purser S, Sawicki M, Thompson AL, Gouverneur V. Tetrahedron: Asymmetry 2009; 20: 910
- 7k Combettes LE, Lozano O, Gouverneur V. J. Fluor. Chem. 2012; 143: 167
- 8a Panek JS, Yang M. J. Am. Chem. Soc. 1991; 113: 9868
- 8b Masse CE, Panek JS. Chem. Rev. 1995; 95: 1293
- 8c Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
- 8d Lee JH. Tetrahedron 2020; 76: 131351
- 8e Roberts DD, McLaughlin MG. Adv. Synth. Catal. 2022; 364: 2307
- 9a Park J, Choi S, Lee Y, Cho SH. Org. Lett. 2017; 19: 4054
- 9b Park J, Jung Y, Kim J, Lee E, Lee SY, Cho SH. Adv. Synth. Catal. 2021; 363: 2371
- 9c Jung Y, Yoo SY, Jin Y, Yu J, Han S, Yu J, Park Y, Cho SH. Angew. Chem. Int. Ed. 2023; in press DOI: 10.1002/anie. 202218794.
- 10 The electrophilic fluorination of α-silyl-substituted allylboronate ester 1m with 2a did not yield the desired product 3m. Instead, we observed that the starting material 1m was fully decomposed under the reaction conditions (Scheme 4).
- 11a Wu J, Lorenzo P, Zhong S, Ali M, Butts CP, Myers EL, Aggarwal VK. Nature 2017; 547: 436
- 11b André-Joyaux E, Kuzovlev A, Tappin ND. C, Renaud P. Angew. Chem. Int. Ed. 2020; 59: 13859
- 11c Wang S, Zhang J, Kong L, Tan Z, Bai Y, Zhu G. Org. Lett. 2018; 20: 5631
- 12 Typical Procedure for the Preparation of Product 3a: In a nitrogen-filled glovebox, Selectfluor 2a (71 mg, 0.20 mmol) and anhydrous acetonitrile (1.0 mL) were added to an oven-dried 4.0 mL dram vial equipped with a Teflon-coated magnetic stirrer bar. The vial was removed from the glovebox and cooled to 0 °C. (E)-Trimethyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-en-1-yl) (1a, 0.24 mmol, 1.2 equiv) in anhydrous acetonitrile solution (1.0 mL) was added dropwise to the solution, under an argon atmosphere. The reaction mixture was stirred at 0 °C for 12 h and then passed through a short pad of celite and washed with CH2Cl2 (50 mL). The filtrate was concentrated under reduced pressure. The 1H NMR yield was determined by using anisole as an internal standard (96%). The crude mixture was purified by column chromatography on silica gel (n-hexane/Et2O = 80:1 to 20:1) to give the corresponding product 3a as a light yellow oil (33 mg, 83%, E/Z = 13:1). 1H NMR (500 MHz, CDCl3): δ = 6.64–6.57 (ddd, J = 18.2, 16.4, 4.6 Hz, 1 H), 5.70–5.65 (m, 1 H), 5.16–5.02 (m, 1 H), 1.43–1.37 (dd, J = 23.7, 6.5 Hz, 3 H), 1.27 (s, 12 H). 13C NMR (126 MHz, CDCl3): δ = 151.2 (d, J = 19.7 Hz), 90.4 (d, J = 167.1 Hz), 83.6, 24.9 (24.91), 24.9 (24.90), 20.9 (d, J = 23.5 Hz). 11B NMR (161 MHz, CDCl3): δ = 29.8. 19F NMR (471 MHz, CDCl3): δ = –167.8 (minor isomer), –172.7 (major isomer).