Subscribe to RSS
DOI: 10.1055/a-2091-0916
Functional α-Cyanostilbenes: Sensing to Imaging
The authors acknowledge financial support from various funding agencies, Council of Scientific and Industrial Research (CSIR) (01(2487)/11/EMR-II), the Department of Science & Technology [SR/S1/PC-24/2010(G)], the Board of Research in Nuclear Sciences (BRNS) (37(2)/14/05/2016) and Science and Engineering Research Board, India (SERB; CRG/2018/004020), that helped us to achieve the research goals. R.D. acknowledges a research fellowship from IIT Gandhinagar, M.A.K. is highly thankful to DST [INSPIRE/04/2016/000098] for financial support.
Abstract
In recent years, there has been considerable interest in cyanostilbenes due to their unique photophysical properties. The compounds emit light when aggregating, commonly called aggregation-induced emission (AIE). This remarkable feature makes cyanostilbenes ideal for various sensing applications, especially in aqueous environments. The detection of various analytes, such as metal ions and nitroaromatic compounds, has been accomplished using these compounds through various sensing mechanisms from chelation-enhanced fluorescence to fluorescence quenching. Furthermore, cyanostilbenes have shown great promise in biological imaging applications and have been employed for intracellular imaging, tracking, and targeting of sub-cellular organelles. The development and utilization of cyanostilbenes can significantly impact advanced sensing and imaging technologies in both analytical and biological fields. This potential stems from the unique properties of cyanostilbenes, such as their AIE characteristics, which sets them apart from other compounds and makes them highly useful for various applications. Further exploration and development of cyanostilbenes could lead to the creation of novel sensing and imaging technologies with wide-ranging applications in both academic and industrial settings.
Publication History
Received: 10 March 2023
Accepted after revision: 10 May 2023
Accepted Manuscript online:
10 May 2023
Article published online:
11 July 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Peng Q, Shuai Z. Aggregate 2021; 2: e91
- 1b Cai Y, Du L, Samedov K, Gu X, Qi F, Sung HH. Y, Patrick BO, Yan Z, Jiang X, Zhang H, Lam JW. Y, Williams ID, Phillips DL, Qin A, Tang BZ. Chem. Sci. 2018; 9: 4662
- 1c Mei J, Leung NL. C, Kwok RT. K, Lam JW. Y, Tang BZ. Chem. Rev. 2015; 115: 11718
- 2 Kokado K, Sada K. Angew. Chem. Int. Ed. 2019; 58: 8632
- 3 La DD, Bhosale SV, Jones LA, Bhosale SV. ACS Appl. Mater. Interfaces 2018; 10: 12189
- 4 Zhang X, Wang Y.-X, Zhao J, Duan P, Chen Y, Chen L. Chem. Asian J. 2017; 12: 830
- 5 Zhu L, Zhao Y. J. Mater. Chem. C 2013; 1: 1059
- 6 Gierschner J, Park SY. J. Mater. Chem. C 2013; 1: 5818
- 7 Shellaiah M, Sun K.-W. Biosensors 2022; 12: 550
- 8 Gao A, Wang Q, Wu H, Zhao J.-W, Cao X. Coord. Chem. Rev. 2022; 471: 214753
- 9 An B.-K, Gierschner J, Park SY. Acc. Chem. Res. 2012; 45: 544
- 10 Mahalingavelar P, Kanvah S. Phys. Chem. Chem. Phys. 2022; 24: 23049
- 11 An B.-K, Kwon S.-K, Jung S.-D, Park SY. J. Am. Chem. Soc. 2002; 124: 14410
- 12a Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M. Chem. Soc. Rev. 2007; 36: 993
- 12b Carter KP, Young AM, Palmer AE. Chem. Rev. 2014; 114: 4564
- 12c Bera MK, Pal P, Malik S. J. Mater. Chem. C 2020; 8: 788
- 13 Wen Y, Jing N, Huo F, Yin C. Analyst 2021; 146: 7450
- 14 Huang G, Chang X, Jiang Y, Lin B, Li BS, Tang BZ. Mater. Chem. Front. 2020; 4: 1720
- 15a Chen M, Ren Y, Liu H, Jiang Q, Zhang J, Zhu M. J. Fluoresc. 2021; 31: 475
- 15b Palakollu V, Kanvah S. New J. Chem. 2014; 38: 5736
- 16 Fang W, Zhao W, Pei P, Liu R, Zhang Y, Kong L, Yang J. J. Mater. Chem. C 2018; 6: 9269
- 17 Katla J, Shaik A, Dahiwadkar R, Thiruvenkatam V, Kanvah S. ChemPlusChem 2019; 84: 1789
- 18 Palakollu V, Vasu AK, Thiruvenkatam V, Kanvah S. New J. Chem. 2016; 40: 4588
- 19 Cao X, Li Y, Han Q, Gao A, Wang B, Chang X, Hou J.-t. J. Mater. Chem. C 2020; 8: 4058
- 20 Teng Y, Wang B, Cui S, Wan Z, Zan Y, Chen L, Yan X, Li Y. Dyes Pigm. 2021; 186: 109029
- 21 Jang M, Kang S, Han MS. Dyes Pigm. 2019; 162: 978
- 22 Ma Y, Cametti M, Džolić Z, Jiang S. J. Mater. Chem. C 2018; 6: 9232
- 23 Lee MH, Kim JS, Sessler JL. Chem. Soc. Rev. 2015; 44: 4185
- 24 Goshisht MK, Patra GK, Tripathi N. Mater. Adv. 2022; 3: 2612
- 25 Fang W, Zhang G, Chen J, Kong L, Yang L, Bi H, Yang J. Sens. Actuators, B 2016; 229: 338
- 26 Ding A, Tang F, Wang TA. O, Tao X, Yang J. J. Chem. Sci. 2015; 127: 375
- 27 Wang X, Gao Z, Zhu J, Gao Z, Wang F. Polym. Chem. 2016; 7: 5217
- 28 Wang A, Yang Y, Yu F, Xue L, Hu B, Dong Y, Fan W. Anal. Methods 2015; 7: 2839
- 29 Wang A, Yang Y, Yu F, Xue L, Hu B, Fan W, Dong Y. Talanta 2015; 132: 864
- 30 Dhoun S, Kaur I, Kaur P, Singh K. Dyes Pigm. 2017; 143: 361
- 31 Seo J, Chung JW, Cho I, Park SY. Soft Matter 2012; 8: 7617
- 32 Wu R, Tian M, Shu C, Zhou C, Guan W. Soft Matter 2022; 18: 8920
- 33 Xue J, Tang F, Ding A, He F, Huang J, Kong L, Yang J. J. Luminescence 2022; 250: 119119
- 34 Zhang Y, Liang C, Jiang S. New J. Chem. 2017; 41: 8644
- 35 Zhang Y, Tang F, He X, Wang C, Kong L, Yang J, Ding A. CrystEngComm 2022; 24: 6865
- 36 Jana P, Yadav M, Kumar T, Kanvah S. J. Photochem. Photobiol., A 2021; 404: 112874
- 37 Kajjam AB, Didar S, Allen MJ. J. Photochem. Photobiol., A 2022; 431: 114036
- 38 Dahiwadkar R, Murugan A, Johnson D, Chakraborty R, Thiruvenkatam V, Kanvah S. J. Photochem. Photobiol., A 2023; 434, 114227
- 39 Ni Y, Zhang S, He X, Huang J, Kong L, Yang J, Yang J. Anal. Methods 2021; 13: 2830
- 40 Ding A, Yang L, Zhang Y, Zhang G, Kong L, Zhang X, Tian Y, Tao X, Yang J. Chemistry 2014; 20: 12215
- 41 Neupane LN, Mehta PK, Oh S, Park S.-H, Lee K.-H. Analyst 2018; 143: 5285
- 42 Kong X, Li M, Zhang Y, Yin Y, Lin W. Sens. Actuators, B 2021; 329: 129232
- 43 Guo H, Lin J, Zheng L, Yang F. Spectrochim. Acta, Part A 2021; 256: 119744
- 44 Marzano NR, Wray KM, Johnston CL, Paudel BP, Hong Y, van Oijen A, Ecroyd H. ACS Chem. Neurosci. 2020; 11: 4191
- 45 Wang Y.-L, Fan C, Xin B, Zhang J.-P, Luo T, Chen Z.-Q, Zhou Q.-Y, Yu Q, Li X.-N, Huang Z.-L, Li C, Zhu M.-Q, Tang BZ. Mater. Chem. Front. 2018; 2: 1554
- 46 Bhaumik SK, Banerjee S. Analyst 2021; 146: 2194
- 47 Bhaumik SK, Patra YS, Banerjee S. Chem. Commun. 2020; 56: 9541
- 48 Jana P, Patel N, Mukherjee T, Soppina V, Kanvah S. New J. Chem. 2019; 43: 10859
- 49 Jana P, Patel N, Soppina V, Kanvah S. New J. Chem. 2019; 43: 584
- 50 Zhu J, Hu X, Yang B, Liu B. Sens. Actuators, B 2019; 282: 743
- 51 Zhu L.-L, Qu D.-H, Zhang D, Chen Z.-F, Wang Q.-C, Tian H. Tetrahedron 2010; 66: 1254
- 52 Zhao B, Yang B, Hu X, Liu B. Spectrochim. Acta, Part A 2018; 199: 117
- 53 Dahiwadkar R, Kumar H, Kanvah S. J. Photochem. Photobiol., A 2022; 427: 113844
- 54 Chen J, Huang X, Tang H, Guo H, Yang F. Dyes Pigm. 2022; 207: 110705
- 55 Gong Y, Du C, Wang X, Guo H, Yang F. Microchem. J. 2021; 162: 105866
- 56 Alam P, He W, Leung NL. C, Ma C, Kwok RT. K, Lam JW. Y, Sung HH. Y, Williams ID, Wong KS, Tang BZ. Adv. Funct. Mater. 2020; 30: 1909268
- 57 Niu G, Zhang R, Gu Y, Wang J, Ma C, Kwok RT. K, Lam JW. Y, Sung HH. Y, Williams ID, Wong KS, Yu X, Tang BZ. Biomaterials 2019; 208: 72
- 58 Mukherjee T, Soppina V, Ludovic R, Mély Y, Klymchenko AS, Collot M, Kanvah S. Org. Biomol. Chem. 2021; 19: 3389
- 59 Yu CY. Y, Zhang W, Kwok RT. K, Leung CW. T, Lam JW. Y, Tang BZ. J. Mater. Chem. B 2016; 4: 2614
- 60 Zhang Y, Wang S, Wang X, Zan Q, Yu X, Fan L, Dong C. Anal. Bioanal. Chem. 2021; 413: 3823
- 61 Kim KY, Jin H, Park J, Jung SH, Lee JH, Park H, Kim SK, Bae J, Jung JH. Nano Res. 2018; 11: 1082
- 62 Wu X, Fu G, Li Y, Li S, Zhao Q, Kong F, Li L, Tang B. Anal. Chem. 2023; 95: 3544
- 63 Li J, Tian M, Yu F, Zhang J, Zheng G, Yan M. Dyes Pigm. 2022; 207: 110779
- 64 Wang C.-C, Yan S.-Y, Chen Y.-Q, Zhou Y.-M, Zhong C, Guo P, Huang R, Weng X.-C, Zhou X. Chin. Chem. Lett. 2015; 26: 323
- 65 Dahiwadkar R, Rajput D, Singh D, Soppina V, Kanvah S. New J. Chem. 2023; 47: 10016
- 66 Ding A.-X, Hao H.-J, Gao Y.-G, Shi Y.-D, Tang Q, Lu Z.-L. J. Mater. Chem. C 2016; 4: 5379