Synlett 2024; 35(01): 3-20
DOI: 10.1055/a-2091-0916
account
Functional Dyes

Functional α-Cyanostilbenes: Sensing to Imaging

Rahul Dahiwadkar
a   Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj- 382355, India
,
Masood A. Kaloo
b   Department of Chemistry, Government Degree College Doda, Doda City, Jammu and Kashmir-182202, India
,
Sriram Kanvah
a   Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj- 382355, India
› Author Affiliations
The authors acknowledge financial support from various funding agencies, Council of Scientific and Industrial Research (CSIR) (01(2487)/11/EMR-II), the Department of Science & Technology [SR/S1/PC-24/2010(G)], the Board of Research in Nuclear Sciences (BRNS) (37(2)/14/05/2016) and Science and Engineering Research Board, India (SERB; CRG/2018/004020), that helped us to achieve the research goals. R.D. acknowledges a research fellowship from IIT Gandhinagar, M.A.K. is highly thankful to DST [INSPIRE/04/2016/000098] for financial support.


Abstract

In recent years, there has been considerable interest in cyanostilbenes due to their unique photophysical properties. The compounds emit light when aggregating, commonly called aggregation-induced emission (AIE). This remarkable feature makes cyanostilbenes ideal for various sensing applications, especially in aqueous environments. The detection of various analytes, such as metal ions and nitroaromatic compounds, has been accomplished using these compounds through various sensing mechanisms from chelation-enhanced fluorescence to fluorescence quenching. Furthermore, cyanostilbenes have shown great promise in biological imaging applications and have been employed for intracellular imaging, tracking, and targeting of sub-cellular organelles. The development and utilization of cyanostilbenes can significantly impact advanced sensing and imaging technologies in both analytical and biological fields. This potential stems from the unique properties of cyanostilbenes, such as their AIE characteristics, which sets them apart from other compounds and makes them highly useful for various applications. Further exploration and development of cyanostilbenes could lead to the creation of novel sensing and imaging technologies with wide-ranging applications in both academic and industrial settings.



Publication History

Received: 10 March 2023

Accepted after revision: 10 May 2023

Accepted Manuscript online:
10 May 2023

Article published online:
11 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany