Subscribe to RSS
DOI: 10.1055/a-2096-6929
Palladium-Catalyzed Hydroalkylation of Alkoxyallenes Using Monofluorinated Nucleophiles
The financial support from the National Key Research and Development Program of China (2021YFC2102400), the National Natural Science Foundation of China (22171087), the Science and Technology Innovation Plan of Shanghai Science and Technology Commission (21N41900500, 20JC1416900), the Fundamental Research Funds for the Central Universities, and the open foundation of Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables (2022K004) is highly appreciated. J.-S.Y. also acknowledges financial support from the ‘Zijiang Scholar Program’ of East China Normal University.

Abstract
A branch-selective hydroalkylation of alkoxyallenes with monofluorinated nucleophiles was developed using palladium catalysis, allowing construction of valuable α-monofluoroalkylated allylic ethers. Notably, this represents the first catalytic hydrofluoroalkylation of alkoxyallenes. The practicability of this method is highlighted by its broad substrate scope and diversified product elaborations. Initial investigation of the asymmetric variant could afford chiral fluorine-containing allylic ethers with up to 68% ee.
Key words
palladium catalysis - alkoxyallenes - hydrofluoroalkylation - branch-selectivity - fluorineSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2096-6929.
- Supporting Information
Publication History
Received: 09 April 2023
Accepted after revision: 22 May 2023
Accepted Manuscript online:
22 May 2023
Article published online:
27 June 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Hiyama T. Organofluorine Compounds: Chemistry and Applications. Springer; New York: 2000
- 1b Bégué J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2007
- 1c Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Chichester: 2009
- 1d Reddy VP. Organofluorine Compounds in Biology and Medicine. Elsevier; Amsterdam: 2020
- 1e Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 1f Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1g O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 1h Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 1i Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 2a Uneyama K, Katagiri T, Amii H. Acc. Chem. Res. 2008; 41: 817
- 2b Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
- 2c Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 2d Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 2e Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
- 2f Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 2g Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
- 2h Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
- 2i Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
- 2j Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
- 2k Hu J, Zhang W, Wang F. Chem. Commun. 2009; 7465
- 2l Feng Z, Xiao Y.-L, Zhang X. Acc. Chem. Res. 2018; 51: 2264
- 2m Dilman AD, Levin VV. Acc. Chem. Res. 2018; 51: 1272
- 3a Chatterjee T, Iqbal N, You Y, Cho EJ. Acc. Chem. Res. 2016; 49: 2284
- 3b Barata-Vallejo S, Cooke MV, Postigo A. ACS Catal. 2018; 8: 7287
- 3c Yerien DE, Barata-Vallejo S, Postigo A. Chem. Eur. J. 2017; 23: 14676
- 3d Koike T, Akita M. Chem 2018; 4: 409
- 3e Laishram RD, Chen J, Fan B. Chem. Rec. 2021; 21: 69
- 4a Zimmer R, Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888
- 4b Koschker P, Breit B. Acc. Chem. Res. 2016; 49: 1524
- 4c Blieck R, Taillefer M, Monnier F. Chem. Rev. 2020; 120: 13545
- 4d Li G.-L, Huo X.-H, Jiang X.-Y, Zhang W.-B. Chem. Soc. Rev. 2020; 49: 2060
- 5a Yu C.-R, Xu L.-H, Tu S, Li Z.-N, Li B. J. Fluorine Chem. 2006; 127: 1540
- 5b Cocco M, Pellegrini C, Martínez-Banaclocha H, Giorgis M, Marini E, Costale A, Miglio G, Fornai M, Antonioli L, López-Castejón G, Tapia-Abellán A, Angosto D, Hafner-Bratkovič I, Regazzoni L, Blandizzi C, Pelegrín P, Bertinaria M. J. Med. Chem. 2017; 60: 3656
- 6a Trost BM, Jäkel C, Plietker B. J. Am. Chem. Soc. 2003; 125: 4438
- 6b Trost BM, Xie J, Sieber JD. J. Am. Chem. Soc. 2011; 133: 20611
- 6c Zhou H, Wei Z, Zhang J.-L, Yang H.-M, Xia C.-G, Jiang G.-X. Angew. Chem. Int. Ed. 2017; 56: 1077
- 6d Jang D.-J, Lee S, Lee J, Moon D, Rhee YH. Angew. Chem. Int. Ed. 2021; 60: 22166
- 6e Lin H.-C, Knox GJ, Pearson CM, Yang C, Carta V, Snaddon TN. Angew. Chem. Int. Ed. 2022; 61: e202201753
- 6f Zhu M.-H, Zhang Q.-L, Zi W.-W. Angew. Chem. Int. Ed. 2021; 60: 6545
- 6g Zhu M.-H, Wang P.-X, Zhang Q.-L, Tang W.-J, Zi W.-W. Angew. Chem. Int. Ed. 2022; 61: e202207621
- 7a Kinderman SS, de Gelder R, van Maarseveen JH, Schoemaker HE, Hiemstra H, Rutjes FP. J. T. J. Am. Chem. Soc. 2004; 126: 4100
- 7b Kim H, Lim W, Im D, Kim D, Rhee YH. Angew. Chem. Int. Ed. 2012; 51: 12055
- 7c Kim H, Rhee YH. J. Am. Chem. Soc. 2012; 134: 4011
- 7d Bernar I, Fiser B, Blanco-Ania D, Gómez-Bengoa E, Rutjes FP. J. T. Org. Lett. 2017; 19: 4211
- 7e Jang SH, Kim HW, Jeong W, Moon D, Rhee YH. Org. Lett. 2018; 20: 1248
- 7f Alonso JM, Muñoz MP. Org. Lett. 2019; 21: 7639
- 7g Gao Z, Yan C.-X, Qian J.-L, Yang H.-M, Zhou P.-P, Zhang J.-L, Jiang G.-X. ACS Catal. 2021; 11: 6931
- 8a Cui D.-M, Zheng Z.-L, Zhang C. J. Org. Chem. 2009; 74: 1426
- 8b Lim W, Kim J, Rhee YH. J. Am. Chem. Soc. 2014; 136: 13618
- 8c Jiang L.-Y, Jia T, Wang M, Liao J, Cao P. Org. Lett. 2015; 17: 1070
- 9 Yang Z.-P, Wang J. Angew. Chem. Int. Ed. 2021; 60: 27288
- 10a Hu X.-S, He J.-X, Dong S.-Z, Zhao Q.-H, Yu J.-S, Zhou J. Nat. Commun. 2020; 11: 5500
- 10b Hu X.-S, He J.-X, Zhang Y, Zhou J, Yu J.-S. Chin. J. Chem. 2021; 39: 2227
- 10c Liao L, Zhang Y, Wu Z.-W, Ye Z.-T, Zhang X.-X, Yu J.-S. Chem. Sci. 2022; 13: 12519
- 11a Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
- 11b Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
- 12a Emerging Fluorinated Motifs: Synthesis, Properties, and Applications, 1st ed. Cahard D, Ma J.-A. Wiley-VCH; Weinheim: 2020
- 12b Ni C, Zhu L, Hu J. Acta Chim. Sin. 2015; 73: 90
- 12c Harsanyi A, Sandford G. Org. Process Res. Dev. 2014; 18: 981
- 13 Xu P.-W, Huang Z. Nat. Chem. 2021; 13: 634
- 14a Alba A.-NR, Companyó X, Rios R. Chem. Soc. Rev. 2010; 39: 2018
- 14b Shibata N. Bull. Chem. Soc. Jpn. 2016; 89: 1307
- 14c Reichel M, Karaghiosoff K. Angew. Chem. Int. Ed. 2020; 59: 12268
- 15a Fukuzumi T, Shibata N, Sugiura M, Yasui H, Nakamura S, Toru T. Angew. Chem. Int. Ed. 2006; 45: 4973
- 15b Ni C, Li Y, Hu J. J. Org. Chem. 2006; 71: 6829
- 15c Mizuta S, Shibata N, Goto Y, Furukawa T, Nakamura S, Toru T. J. Am. Chem. Soc. 2007; 129: 6394
- 15d Furukawa T, Shibata N, Mizuta S, Nakamura S, Toru T, Shiro M. Angew. Chem. Int. Ed. 2008; 47: 8051
- 15e Alba A.-N, Companyó X, Moyano A, Rios R. Chem. Eur. J. 2009; 15: 7035
- 15f Zhang S, Zhang Y, Ji Y, Li H, Wang W. Chem. Commun. 2009; 4886
- 15g Ullah F, Zhao G.-L, Deiana L, Zhu M, Dziedzic P, Ibrahem I, Hammar P, Sun J, Córdova A. Chem. Eur. J. 2009; 15: 10013
- 15h Liu W.-B, Zheng S.-C, He H, Zhao X.-M, Dai L.-X, You S.-L. Chem. Commun. 2009; 6604
For leading books, see:
For selected reviews, see:
Selected reviews:
Selected reviews:
Seminal works on the synthesis and application of FBSM:
For selected examples, see: