Hamostaseologie 2023; 43(04): 244-251
DOI: 10.1055/a-2099-3266
Review Article

State-of-the-Art Targeted High-Throughput Sequencing for Detecting Inherited Platelet Disorders

Jennifer Gebetsberger*
1   Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
,
Kristina Mott*
2   Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
,
Aline Bernar
1   Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
,
Eva Klopocki
3   Institute of Human Genetics, University of Würzburg, Würzburg, Germany
,
Werner Streif
1   Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
,
2   Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
4   Center for Rare Blood Cell Disorders, Center for Rare Diseases, University Hospital Würzburg, Würzburg, Germany
› Institutsangaben

Abstract

Inherited platelet disorders (IPDs) are a heterogeneous group of rare entities caused by molecular divergence in genes relevant for platelet formation and function. A rational diagnostic approach is necessary to counsel and treat patients with IPDs. With the introduction of high-throughput sequencing at the beginning of this millennium, a more accurate diagnosis of IPDs has become available. We discuss advantages and limitations of genetic testing, technical issues, and ethical aspects. Additionally, we provide information on the clinical significance of different classes of variants and how they are correctly reported.

Zusammenfassung

Angeborene Thrombozytenstörungen (IPDs) sind eine heterogene Gruppe seltener Krankheiten, die durch molekulare Divergenz in Genen verursacht werden, die für die Bildung und Funktion von Blutplättchen relevant sind. Ein rationaler diagnostischer Ansatz ist notwendig, um Patienten mit IPDs zu beraten und zu behandeln. Mit der Einführung der Hochdurchsatz-Sequenzierung zu Beginn dieses Jahrtausends ist eine präzisere Diagnose von IPDs möglich geworden. Wir diskutieren Vorteile und Einschränkungen von genetischen Tests, technische Probleme und ethische Aspekte. Zusätzlich bieten wir Informationen über die klinische Bedeutung verschiedener Klassen von Varianten und wie sie korrekt gemeldet werden.

Final Note

All Web links have been tested as active on May 18, 2023. The authors do not take responsibility for future changes of links or their contents.


* J.G. and K.M. contributed equally to this work.




Publikationsverlauf

Eingereicht: 21. März 2023

Angenommen: 23. Mai 2023

Artikel online veröffentlicht:
23. August 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 2008; 28 (03) 403-412
  • 2 Denorme F, Campbell RA. Procoagulant platelets: novel players in thromboinflammation. Am J Physiol Cell Physiol 2022; 323 (04) C951-C958
  • 3 Campbell RA, Schwertz H, Hottz ED. et al. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood 2019; 133 (19) 2013-2026
  • 4 Lombardi L, Maiorca F, Marrapodi R. et al. Distinct platelet crosstalk with adaptive and innate immune cells after adenoviral and mRNA vaccination against SARS-CoV-2. J Thromb Haemost 2023; 21 (06) 1636-1649
  • 5 Palma-Barqueros V, Revilla N, Sánchez A. et al. Inherited platelet disorders: an updated overview. Int J Mol Sci 2021; 22 (09) 4521
  • 6 Ballmaier M, Germeshausen M, Schulze H. et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 2001; 97 (01) 139-146
  • 7 Nurden A. Profiling the genetic and molecular characteristics of Glanzmann thrombasthenia: Can it guide current and future therapies?. J Blood Med 2021; 12: 581-599
  • 8 Nurden AT, Pillois X, Fiore M, Heilig R, Nurden P. Glanzmann thrombasthenia-like syndromes associated with macrothrombocytopenias and mutations in the genes encoding the αIIbβ3 integrin. Semin Thromb Hemost 2011; 37 (06) 698-706
  • 9 Savoia A, Kunishima S, De Rocco D. et al. Spectrum of the mutations in Bernard-Soulier syndrome. Hum Mutat 2014; 35 (09) 1033-1045
  • 10 Kahr WH, Hinckley J, Li L. et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2011; 43 (08) 738-740
  • 11 Klopocki E, Schulze H, Strauss G. et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am J Hum Genet 2007; 80 (02) 232-240
  • 12 Albers CA, Paul DS, Schulze H. et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 2012; 44 (04) 435-439 , S1–S2
  • 13 Bastida JM, Benito R, Lozano ML. et al. Molecular diagnosis of inherited coagulation and bleeding disorders. Semin Thromb Hemost 2019; 45 (07) 695-707
  • 14 Andres O, Wiegering V, König EM. et al. A novel two-nucleotide deletion in HPS6 affects mepacrine uptake and platelet dense granule secretion in a family with Hermansky-Pudlak syndrome. Pediatr Blood Cancer 2017; 64 (05)
  • 15 Heremans J, Freson K. High-throughput sequencing for diagnosing platelet disorders: lessons learned from exploring the causes of bleeding disorders. Int J Lab Hematol 2018; 40 (Suppl. 01) 89-96
  • 16 Knöfler R, Streif W. Strategies in clinical and laboratory diagnosis of inherited platelet function disorders in children. Transfus Med Hemother 2010; 37 (05) 231-235
  • 17 Streif W, Knöfler R, Eberl W. et al; Paediatric Committee of the Society of Thrombosis and Haemostasis Research. [Therapy of inherited diseases of platelet function. Interdisciplinary S2K guideline of the Permanent Paediatric Committee of the Society of Thrombosis and Haemostasis Research (GTH e. V.)]. Hamostaseologie 2014; 34 (04) 269-275 , quiz 276
  • 18 Gresele P. Subcommittee on Platelet Physiology of the International Society on Thrombosis and Hemostasis. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (02) 314-322
  • 19 Bourguignon A, Tasneem S, Hayward CP. Screening and diagnosis of inherited platelet disorders. Crit Rev Clin Lab Sci 2022; 59 (06) 405-444
  • 20 Andres O, Henning K, Strauß G, Pflug A, Manukjan G, Schulze H. Diagnosis of platelet function disorders: a standardized, rational, and modular flow cytometric approach. Platelets 2018; 29 (04) 347-356
  • 21 Sivapalaratnam S, Collins J, Gomez K. Diagnosis of inherited bleeding disorders in the genomic era. Br J Haematol 2017; 179 (03) 363-376
  • 22 Weiss LJ, Drayss M, Mott K. et al. Ontogenesis of functional platelet subpopulations from preterm and term neonates to adulthood: the PLINIUS study. Blood Adv 2023:bloodadvances.2023009824
  • 23 Knöfler R, Eberl W, Schulze H. et al. [Diagnosis of inherited diseases of platelet function. Interdisciplinary S2K guideline of the Permanent Paediatric Committee of the Society of Thrombosis and Haemostasis Research (GTH e. V.)]. Hamostaseologie 2014; 34 (03) 201-212
  • 24 Gresele P, Harrison P, Bury L. et al. Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. J Thromb Haemost 2014; 12 (09) 1562-1569
  • 25 Fiedler J, Strauss G, Wannack M. et al. Two patterns of thrombopoietin signaling suggest no coupling between platelet production and thrombopoietin reactivity in thrombocytopenia-absent radii syndrome. Haematologica 2012; 97 (01) 73-81
  • 26 Schlegelberger B, Heller PG. RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM). Semin Hematol 2017; 54 (02) 75-80
  • 27 Deuitch N, Broadbridge E, Cunningham L. et al. RUNX1 familial platelet disorder with associated myeloid malignancies. In: Adam MP, Mirzaa GM, Pagon RA. et al, eds. GeneReviews. Seattle, WA: University of Washington; 1993
  • 28 Sullivan MJ, Palmer EL, Botero JP. ANKRD26-related thrombocytopenia and predisposition to myeloid neoplasms. Curr Hematol Malig Rep 2022; 17 (05) 105-112
  • 29 Crossley BM, Bai J, Glaser A. et al. Guidelines for Sanger sequencing and molecular assay monitoring. J Vet Diagn Invest 2020; 32 (06) 767-775
  • 30 Introne WJ, Huizing M, Malicdan MCV. et al. Hermansky-Pudlak syndrome. In: Adam MP, Mirzaa GM, Pagon RA. et al., eds. GeneReviews. Seattle, WA: University of Washington; 1993
  • 31 Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15 (07) 1262-1272
  • 32 Lentaigne C, Freson K, Laffan MA, Turro E, Ouwehand WH. BRIDGE-BPD Consortium and the ThromboGenomics Consortium. Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127 (23) 2814-2823
  • 33 Gomez K, Laffan M, Keeney S, Sutherland M, Curry N, Lunt P. Recommendations for the clinical interpretation of genetic variants and presentation of results to patients with inherited bleeding disorders. A UK Haemophilia Centre Doctors' Organisation Good Practice Paper. Haemophilia 2019; 25 (01) 116-126
  • 34 Feurstein S, Godley LA. Germline ETV6 mutations and predisposition to hematological malignancies. Int J Hematol 2017; 106 (02) 189-195
  • 35 Simeoni I, Stephens JC, Hu F. et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016; 127 (23) 2791-2803
  • 36 Westbury SK, Turro E, Greene D. et al; BRIDGE-BPD Consortium. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med 2015; 7 (01) 36
  • 37 Fletcher SJ, Johnson B, Lowe GC. et al; UK Genotyping and Phenotyping of Platelets Study Group. SLFN14 mutations underlie thrombocytopenia with excessive bleeding and platelet secretion defects. J Clin Invest 2015; 125 (09) 3600-3605
  • 38 Leo VC, Morgan NV, Bem D. et al; UK GAPP Study Group. Use of next-generation sequencing and candidate gene analysis to identify underlying defects in patients with inherited platelet function disorders. J Thromb Haemost 2015; 13 (04) 643-650
  • 39 Bean LJH, Funke B, Carlston CM. et al; ACMG Laboratory Quality Assurance Committee. Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020; 22 (03) 453-461
  • 40 Andres O, König EM, Althaus K. et al; THROMKIDplus Study Group of the Society of Paediatric Oncology Haematology (Gesellschaft für Pädiatrische Onkologie und Hämatologie, GPOH) and the Society of Thrombosis Haemostasis Research (Gesellschaft für Thrombose- und Hämostaseforschung, GTH). Use of targeted high-throughput sequencing for genetic classification of patients with bleeding diathesis and suspected platelet disorder. TH Open 2018; 2 (04) e445-e454
  • 41 Lassandro G, Palladino V, Faleschini M. et al. “CHildren with Inherited Platelet disorders Surveillance” (CHIPS) retrospective and prospective observational cohort study by Italian Association of Pediatric Hematology and Oncology (AIEOP). Front Pediatr 2022; 10: 967417
  • 42 Romasko EJ, Devkota B, Biswas S. et al. Utility and limitations of exome sequencing in the molecular diagnosis of pediatric inherited platelet disorders. Am J Hematol 2018; 93 (01) 8-16
  • 43 Mekchay P, Ittiwut C, Ittiwut R. et al. Whole exome sequencing for diagnosis of hereditary thrombocytopenia. Medicine (Baltimore) 2020; 99 (47) e23275
  • 44 Johnson B, Lowe GC, Futterer J. et al; UK GAPP Study Group. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica 2016; 101 (10) 1170-1179
  • 45 Marconi C, Di Buduo CA, Barozzi S. et al. SLFN14-related thrombocytopenia: identification within a large series of patients with inherited thrombocytopenia. Thromb Haemost 2016; 115 (05) 1076-1079
  • 46 Downes K, Borry P, Ericson K. et al; Subcommittee on Genomics in Thrombosis, Hemostasis. Clinical management, ethics and informed consent related to multi-gene panel-based high throughput sequencing testing for platelet disorders: Communication from the SSC of the ISTH. J Thromb Haemost 2020; 18 (10) 2751-2758
  • 47 Anonymous. Ethical and policy issues in genetic testing and screening of children. Pediatrics 2013; 131: 620-622
  • 48 Greinacher A, Eekels JJM. Diagnosis of hereditary platelet disorders in the era of next-generation sequencing: “primum non nocere”. J Thromb Haemost 2019; 17 (03) 551-554
  • 49 Richards S, Aziz N, Bale S. et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 50 Othman M. Platelet-type von Willebrand disease: a rare, often misdiagnosed and underdiagnosed bleeding disorder. Semin Thromb Hemost 2011; 37 (05) 464-469
  • 51 Othman M, Kaur H, Emsley J. Platelet-type von Willebrand disease: new insights into the molecular pathophysiology of a unique platelet defect. Semin Thromb Hemost 2013; 39 (06) 663-673
  • 52 Megy K, Downes K, Morel-Kopp MC. et al. GoldVariants, a resource for sharing rare genetic variants detected in bleeding, thrombotic, and platelet disorders: Communication from the ISTH SSC Subcommittee on Genomics in Thrombosis and Hemostasis. J Thromb Haemost 2021; 19 (10) 2612-2617