Subscribe to RSS
DOI: 10.1055/a-2103-9140
Ligand-Enabled Regio- and/or Stereoselective Hydroboration of Alkenes
We thank Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences for its generous financial support.
Abstract
Alkylboronic acids are widely used in medicinal chemistry, material sciences, and organic synthesis. Accordingly, a large number of methods have been developed for the regio- and stereo-selective synthesis of these structures. Transition-metal-catalyzed hydroboration of alkenes is one of the most convenient and direct methods. However, the stereoselective hydroboration of heteroatom-substituted alkenes and regioselective hydroboration of aliphatic internal alkenes are still challenging. In this account, we emphasize our recent work on ligand-enabled transition-metal-catalyzed regio- and/or stereoselective hydroboration of alkenes, including copper-catalyzed asymmetric hydroboration of β-amidoacrylonitriles, β-amidoacrylate esters, indole-3-carboxylates, and iridium-catalyzed distal hydroboration of aliphatic internal alkenes.
1 Introduction
2 Copper-Catalyzed Asymmetric Hydroboration of Enamine Derivatives
3 Iridium-Catalyzed Distal Hydroboration of Aliphatic Internal Alkenes
4 Conclusion
Publication History
Received: 05 May 2023
Accepted after revision: 31 May 2023
Accepted Manuscript online:
31 May 2023
Article published online:
14 July 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Pelter A, Smith K, Brown HC. Borane Reagents . Academic Press; London: 1988
- 1b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 1c Davison M, Hughes AK, Marder TB, Wade K. Contemporary Boron Chemistry . RSC; Cambridge UK: 2000
- 2a Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 2b Schiffner JA, Müther K, Oestreich M. Angew. Chem. Int. Ed. 2010; 49: 1194
- 2c Cid J, Gulyas H, Carbo JJ, Fernandez E. Chem. Soc. Rev. 2012; 43: 3558
- 2d Dang L, Lin Z, Marder TB. Chem. Commun. 2009; 3987
- 2e Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
- 2f Coombs JR, Morken JP. Angew. Chem. Int. Ed. 2016; 55: 2636
- 3a Lata CJ, Crudden CM. J. Am. Chem. Soc. 2010; 132: 131
- 3b Zhang L, Peng D, Leng X, Huang Z. Angew. Chem. Int. Ed. 2013; 52: 3676
- 3c Zhang L, Zuo Z, Leng X, Huang Z. Angew. Chem. Int. Ed. 2014; 53: 2696
- 3d Iwamoto H, Imamoto T, Ito H. Nat. Commun. 2018; 9: 2290
- 3e Iwamoto H, Kubota K, Ito H. Chem. Commun. 2016; 52: 5916
- 3f Jang WJ, Song SM, Moon JH, Lee JY, Yun J. J. Am. Chem. Soc. 2017; 139: 13660
- 4a Koji K, Eiji Y, Hajime I. Adv. Synth. Catal. 2013; 355: 3527
- 4b Hajime I, Hiroshi Y, Jun-ichi T, Akira H. ChemInform 2000; 31
- 4c Ito H, Yamanaka H, Tateiwa J, Hosomi A. Tetrahedron Lett. 2000; 41: 6821
- 4d Kou T, Tatsuo I, Norio M. Chem. Lett. 2000; 29: 982
- 4e O’Brien JM, Lee K.-S, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10630
- 4f Mun S, Lee J.-E, Yun J. Org. Lett. 2006; 8: 4887
- 4g Sim H.-S, Feng X, Yun J. Chem. Eur. J. 2009; 15: 1939
- 4h Feng X, Yun J. Chem. Commun. 2009; 6577
- 4i Luo Y, Roy ID, Madec AG. E, Lam HW. Angew. Chem. Int. Ed. 2014; 53: 4186
- 4j Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2007; 47: 145
- 4k Chea H, Sim H.-S, Yun J. Adv. Synth. Catal. 2009; 351: 855
- 4l Sasaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
- 4m Meng F, Jang H, Hoveyda AH. Chem. Eur. J. 2013; 19: 3204
- 5a Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
- 5b Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
- 5c Koji K, Yuta W, Hajime I. Adv. Synth. Catal. 2016; 358: 2379
- 5d Lu W, Fengchang C, Han L, Shuoqing Z, Xin H, Fanke M. Asian J. Org. Chem. 2018; 7: 103
- 5e Wen Y, Xie J, Deng C, Li C. J. Org. Chem. 2015; 80: 4142
- 5f Noh D, Yoon SK, Won J, Lee JY, Yun J. Chem. Asian J. 2011; 6: 1967
- 5g Wang Z, He X, Zhang R, Zhang G, Xu G, Zhang Q, Xiong T, Zhang Q. Org. Lett. 2017; 19: 3067
- 5h Corberan R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
- 5i Zhang L, Zuo Z, Wan X, Huang Z. J. Am. Chem. Soc. 2014; 136: 15501
- 5j Chen J, Xi T, Lu Z. Org. Lett. 2014; 16: 6452
- 5k Chen J, Xi T, Ren X, Cheng B, Guo J, Lu Z. Org. Chem. Front. 2014; 1: 1306
- 5l Hoang GL, Zhang S, Takacs JM. Chem. Commun. 2018; 54: 4838
- 5m Crudden CM, Hleba YB, Chen AC. J. Am. Chem. Soc. 2004; 126: 9200
- 6a Hoveyda AH, Evans DA, Fu GC. Chem. Rev. 1993; 93: 1307
- 6b Evans DA, Fu GC. J. Am. Chem. Soc. 1991; 113: 4042
- 6c Smith SM, Takacs JM. J. Am. Chem. Soc. 2010; 132: 1740
- 6d Smith SM, Thacker NC, Takacs JM. J. Am. Chem. Soc. 2008; 130: 3734
- 6e Shoba VM, Thacker NC, Bochat AJ, Takacs JM. Angew. Chem. Int. Ed. 2016; 55: 1465
- 6f Chakrabarty S, Takacs JM. J. Am. Chem. Soc. 2017; 139: 6066
- 6g Evans DA, Fu GC, Anderson BA. J. Am. Chem. Soc. 1992; 114: 6679
- 6h Hoang GL, Takacs JM. Chem. Sci. 2017; 8: 4511
- 6i Zhao W, Chen K.-Z, Li A.-Z, Li B.-J. J. Am. Chem. Soc. 2022; 144: 13071
- 7 Xi Y, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 6703
- 8 Bai X.-Y, Zhao W, Sun X, Li B.-J. J. Am. Chem. Soc. 2019; 141: 19870
- 9a Smith SM, Hoang GL, Pal R, Khaled MO. B, Pelter LS. W, Zeng XC, Takacs JM. Chem. Commun. 2012; 48: 12180
- 9b Lu H, Li B. Chin. J. Org. Chem. 2022; 42: 3167
- 9c Guo J, Cheng Z, Chen J, Chen X, Lu Z. Acc. Chem. Res. 2021; 54: 2701
- 9d Alam S, Karim R, Khan A, Pal AK, Maruani A. Eur. J. Org. Chem. 2021; 6115
- 10a Chen L, Zou X, Zhao H, Xu S. Org. Lett. 2017; 19: 3676
- 10b Chen L, Shen J.-J, Gao Q, Xu S. Chem. Sci. 2018; 9: 5855
- 10c Wang G, Liang X, Chen L, Gao Q, Wang J.-G, Zhang P, Peng Q, Xu S. Angew. Chem. Int. Ed. 2019; 58: 8187
- 10d Zhao H, Gao Q, Zhang Y, Zhang P, Xu S. Org. Lett. 2020; 22: 2861
- 11a Rentsch A, Landsberg D, Brodmann T, Buelow L, Girbig A.-K, Kalesse M. Angew. Chem. Int. Ed. 2013; 52: 5450
- 11b Andres P, Ballano G, Calaza MI, Cativiela C. Chem. Soc. Rev. 2016; 45: 2291
- 11c Dick LR, Fleming PE. Drug Discovery Today 2010; 15: 243
- 11d Roemmele RC, Christie MA. Org. Process Res. Dev. 2013; 17: 422
- 11e Gentile M, Offidani M, Vigna E, Corvatta L, Recchia AG, Morabito L, Morabito F, Gentili S. Expert Opin. Invest. Drugs 2015; 24: 1287
- 11f Inglis SR, Strieker M, Rydzik AM, Dessen A, Schofield CJ. Anal. Biochem. 2012; 420: 41
- 11g Jin S, Zhu C, Cheng Y, Li M, Wang B. Bioorg. Med. Chem. 2010; 18: 1449
- 11h Ohmura T, Awano T, Suginome M. J. Am. Chem. Soc. 2010; 132: 13191
- 11i Awano T, Ohmura T, Suginome M. J. Am. Chem. Soc. 2011; 133: 20738
- 11j Buesking AW, Ellman JA. Chem. Sci. 2014; 5: 1983
- 12a Matteson DS. Chem. Rev. 1989; 89: 1535
- 12b Matteson DS. Med. Res. Rev. 2008; 28: 233
- 12c Beenen MA, An C, Ellman JA. J. Am. Chem. Soc. 2008; 130: 6910
- 12d Xie J.-b, Luo J, Winn TR, Cordes DB, Li G. Beilstein J. Org. Chem. 2014; 10: 746
- 12e He Z, Zajdlik A, St Denis JD, Assem N, Yudin AK. J. Am. Chem. Soc. 2012; 134: 9926
- 12f Zajdlik A, Wang Z, Hickey JL, Aman A, Schimmer AD, Yudin AK. Angew. Chem. Int. Ed. 2013; 52: 8411
- 13a Hong K, Morken JP. J. Am. Chem. Soc. 2013; 135: 9252
- 13b Sole C, Gulyas H, Fernández E. Chem. Commun. 2012; 48: 3769
- 13c Zhang S.-S, Zhao Y.-S, Tian P, Lin G.-Q. Synlett 2013; 24: 437
- 13d Wang D, Cao P, Wang B, Jia T, Lou Y, Wang M, Liao J. Org. Lett. 2015; 17: 2420
- 13e Hu N, Zhao G, Zhang Y, Liu X, Li G, Tang W. J. Am. Chem. Soc. 2015; 137: 6746
- 13f Nishikawa D, Hirano K, Miura M. J. Am. Chem. Soc. 2015; 137: 15620
- 14 Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356: eaam7355
- 15a Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 15b Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 15c Ding Q, Zhou X, Fan R. Org. Biomol. Chem. 2014; 12: 4807
- 15d Roche SP, Youte J.-J, Tréguier B. Tetrahedron 2015; 71: 3549
- 16 Xia Z, Xu-Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286
- 17a Arrowsmith M, Hill MS, Hadlington T, Kociok-Köhn G, Weetman C. Organometallics 2011; 30: 5556
- 17b Oshima K, Ohmura T, Suginome M. J. Am. Chem. Soc. 2011; 133: 7324
- 17c Oshima K, Ohmura T, Suginome M. J. Am. Chem. Soc. 2012; 134: 3699
- 17d Dudnik AS, Weidner VL, Motta A, Delferro M, Marks TJ. Nat. Chem. 2014; 6: 1100
- 17e Zhang F, Song H, Zhuang X, Tung C.-H, Wang W. J. Am. Chem. Soc. 2017; 139: 17775
- 17f Fan X, Zheng J, Li ZH, Wang H. J. Am. Chem. Soc. 2015; 137: 4916
- 17g Ohmura T, Morimasa Y, Suginome M. J. Am. Chem. Soc. 2015; 137: 2852
- 17h Rao B, Chong CC, Kinjo R. J. Am. Chem. Soc. 2018; 140: 652
- 17i Jayaraman A, Misal Castro LC, Desrosiers V, Fontaine F.-G. Chem. Sci. 2018; 9: 5057
- 18a Orallo F, Tristan H, Garcia-Ferreiro T, Francisco SD. E, Masaguer C, Ravina E, Calleja JM, Cadavid I, Loza MI. Biol. Pharm. Bull. 2000; 23: 558
- 18b Clemett D, Jarvis B. Drugs Aging 2001; 18: 277
- 18c Ettinger U, Kumari V, Zachariah E, Galea A, Crawford TJ, Corr PJ, Taylor D, Das M, Sharma T. Neuropsychopharmacology 2003; 28: 2199
- 19a Hoffmann S, Nicoletti M, List B. J. Am. Chem. Soc. 2006; 128: 13074
- 19b Lu Z, Wilsily A, Fu GC. J. Am. Chem. Soc. 2011; 133: 8154
- 19c Zhu S, Buchwald SL. J. Am. Chem. Soc. 2014; 136: 15913
- 19d Czekelius C, Carreira EM. Angew. Chem. Int. Ed. 2003; 42: 4793
- 20a Nguyen TN, May JA. Org. Lett. 2018; 20: 3618
- 20b Ghorai MK, Shukla D, Bhattacharyya A. J. Org. Chem. 2012; 77: 3740
- 20c Bera M, Pratihar S, Roy S. J. Org. Chem. 2011; 76: 1475
- 20d Ghorai MK, Kumar A, Tiwari DP. J. Org. Chem. 2010; 75: 137
- 20e Yadav JS, Reddy BV. S, Narasimhulu G, Satheesh G. Synlett 2009; 727
- 20f Bertolini F, Crotti S, Di Bussolo V, Macchia F, Pineschi M. J. Org. Chem. 2008; 73: 8998
- 20g Dwivedi SK, Gandhi S, Rastogi N, Singh VK. Tetrahedron Lett. 2007; 48: 5375
- 20h Domostoj M, Ungureanu I, Schoenfelder A, Klotz P, Mann A. Tetrahedron Lett. 2006; 47: 2205
- 21 Wu Z, Laffoon SD, Hull KL. Nat. Commun. 2018; 9: 1185
Selected reviews, see:
Selected examples, see:
Selected examples, see:
Selected examples, see:
For a review, see:
For examples, see: